

THE

Nuclear Industry/Next Generation Reactors Update

NPPD Board of Directors Meeting

December 2025

Khalil Dia, CNS Site Vice President Dan Buman, Special Assistant to Site VP

Common Terminology

- Small Modular Reactor(SMR)/Microreactor
 - Refers to the size of a single unit
 - Less than 20 MW Microreactor
 - 20 to 300 MW SMR
 - >300 MW Full Size Reactor
- Light Water/High Temperature Gas/Liquid Metal/Molten Salt Reactors
 - Types of Reactors
 - Refers to the coolant/heat transfer mechanism from the nuclear core
 - Existing commercial reactors in the US are Light water
 - Original Hallam plant was a liquid metal reactor
 - Molten Salt contains heat storage capabilities
- Next Generation Nuclear/Advanced Nuclear
 - Refers to the evolution stage of reactor (existing fleet in US is generation II)
 - Next generation generation III or above
 - Advanced Reactor is generation IV

Next Generation Nuclear

Generation I

Early Prototype Reactors

- Shippingport
- · Dresden, Fermi I
- Magnox

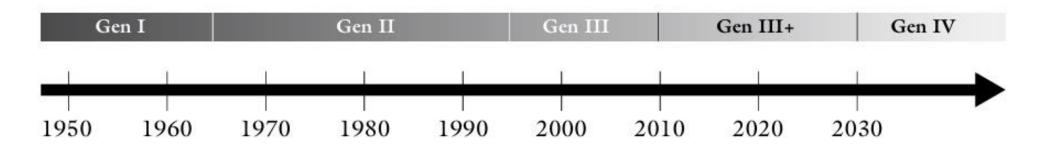
Generation II

Commercial Power Reactors

- · LWR-PWR, BWR
- CANDU
- VVER/RBMK

Generation III

Advanced LWRs

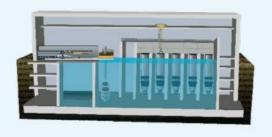

- ABWR
- System 80+
- · AP600
- EPR

Courtesy of DOE, Office of Nuclear Energy

Near-Term Deployment

Generation III+ Evolutionary Designs Offering Improved Economics Generation IV

- Highly Economical
- · Enhanced Safety
- Minimal Waste
- Proliferation Resistant


Next Generation Reactor Sizes

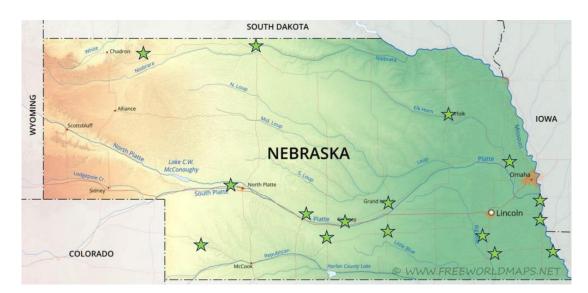
Small Modular Reactors Range: 20 MW to 300 MW

Can be scaled up or down by adding more units.

Full-Size Reactors Range: 300 MW to 1,000+MW

Can provide reliable, emissions-free baseload power.

Advantages


- SMRs simplify construction, reduce costs, and shorten construction time
 - Gen III+ and Gen IV have passive safety features
 - Walk Away Design
 - Factory built components vice mega-construction site
 - Smaller footprint (both physically and water use)
 - Smaller Emergency Planning Zones (EPZ) at Site Boundary vs 10 Mile Radius
 - Standardized design quickly moves costs to "nth of a kind" levels
 - Smaller staff results in lower fixed costs
 - Increased flexibility in operation
 - Ability to match with intermittent forms of generation
 - Lower dispatch threshold, heat storage, ability to load follow, etc.
 - Advanced reactors have higher thermal and fuel efficiencies
 - Potentially use existing used fuel.
- Although based on proven technology, need to demonstrate ability to scale

Current Industry Status

- Nuclear Energy Institute (NEI)
 - Over 60 commercial projects planned/considered in the USA and Canada
 - Approx. 30 Vendors are members of Advanced Nuclear Designers group
- Nuclear Regulatory Commission (NRC) reviews
 - 23 new designs (6 Gen III+, 15 Gen IV)
 - 7 Construction Permits (3 sites submitted, 4 future applications)
 - TVA/GE BWRX-300 (Clinch River Site actual Construction for 4 started in Canada)
 - Terra Power Natrium Site (Kennemer Wyoming)
 - Dow Chemical/X-Energy Site (Houston Texas)
 - 3 Early Site Permits being considered (not yet submitted)
- State of Nebraska
 - Siting Study
 - Great Plains New Nuclear Consortium

Nebraska SMR Siting Study

- Phase 1 of study to identify best 16 sites COMPLETE
- Phase 2 of study to identify top sites On-track for release 3/31/26
 - Technical Evaluation by Consultant In Progress
 - Included field walkdowns, transmission injection study, water usage study, etc.
 - Public Engagement In Progress
 - Initial engagement Complete
 - Follow Up Engagement On going

New Nuclear In Nebraska

- Additional efforts being considered/pursued
 - Position ourselves to move quickly (fast follower)
 - Derisk deployment
 - Down Select Technology
 - Exploring preliminary site license
 - Form Consortium with Like Minded Utilities
 - Assess other beneficial partnership opportunities
 - Move fast once licensing, construction cost & schedule risks are understood
 - Form value added partnerships
 - Leverage history & experience as a nuclear operating utility

Great Plains New Nuclear Consortium

- Collaborative effort of public power utilities operating in SPP footprint
 - Explore the feasibility/development of plans to deploy new nuclear in Nebraska
- Memorandum of Understanding (MOU) signed
 - Nebraska Public Power District
 - Omaha Public Power District
 - Lincoln Electric System
 - Grand River Dam Authority (Oklahoma)
- MOU provides framework of cooperation
 - Coordinated by steering committee led by NPPD with each utility represented
 - Each utility will self fund its own early-stage work
 - Any future steps will follow each utilities independent board approval process

THE PEROPE

Questions?

Stay connected with us.

