

Artificial Intelligence R&D at EPRI

Jeremy Renshaw Sr. Technical Executive jrenshaw@epri.com

www.ai.epri.com | ai@epri.com

in X f www.epri.com © 2024 Electric Power Research Institute, Inc. All rights reserved.

What is the Value of AI?

EPRI

Building an AI-Electric Power Community

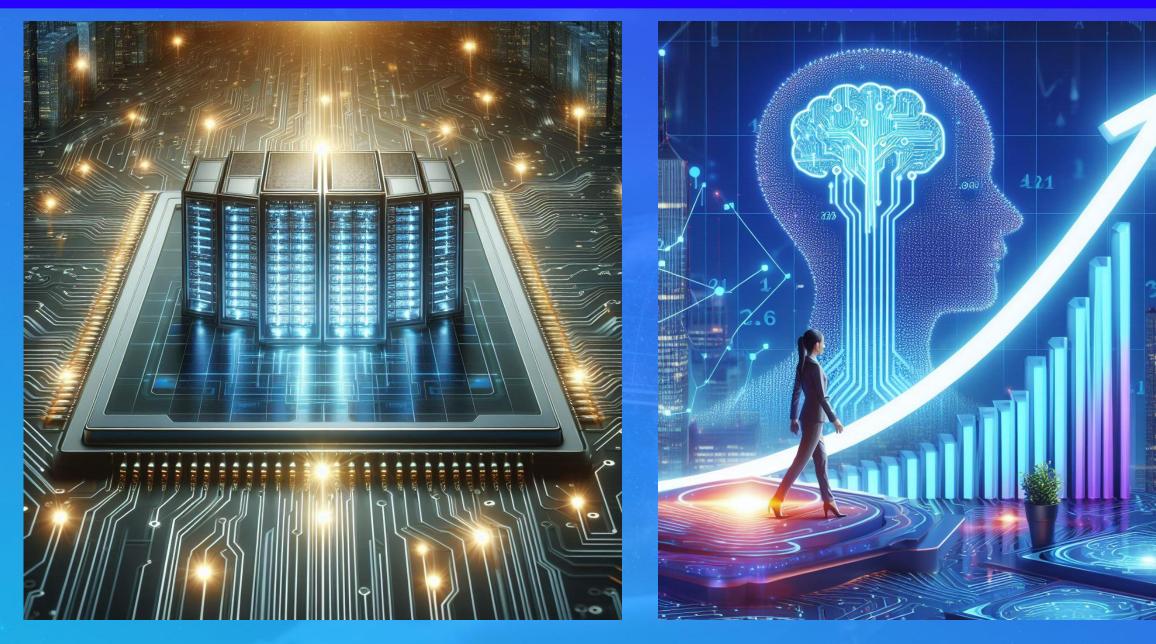
Collecting, Curating and Sharing Data, and Developing Solutions

Deepening AI Expertise in the Electric Power Industry

ARTIFICIAL • INTELLIGENCE

Our AI GRAND CHALLENGES

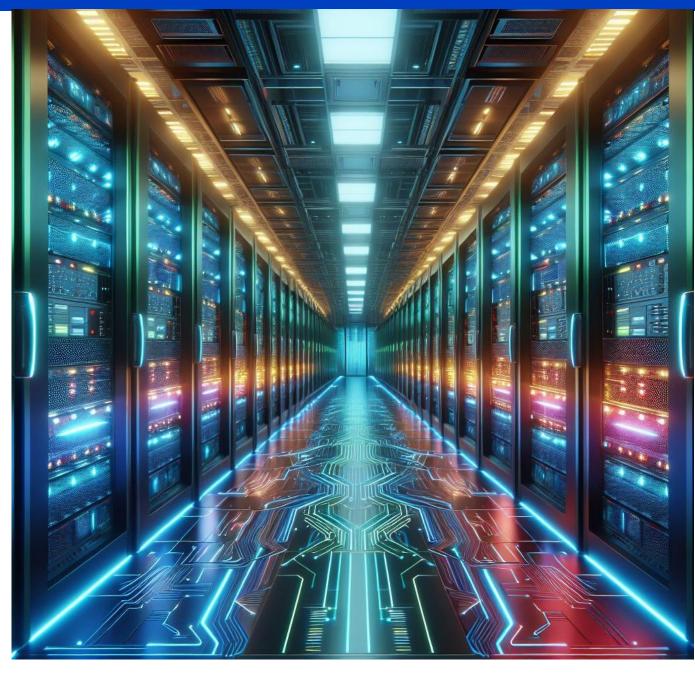
I Grid-Interactive Smart Communities

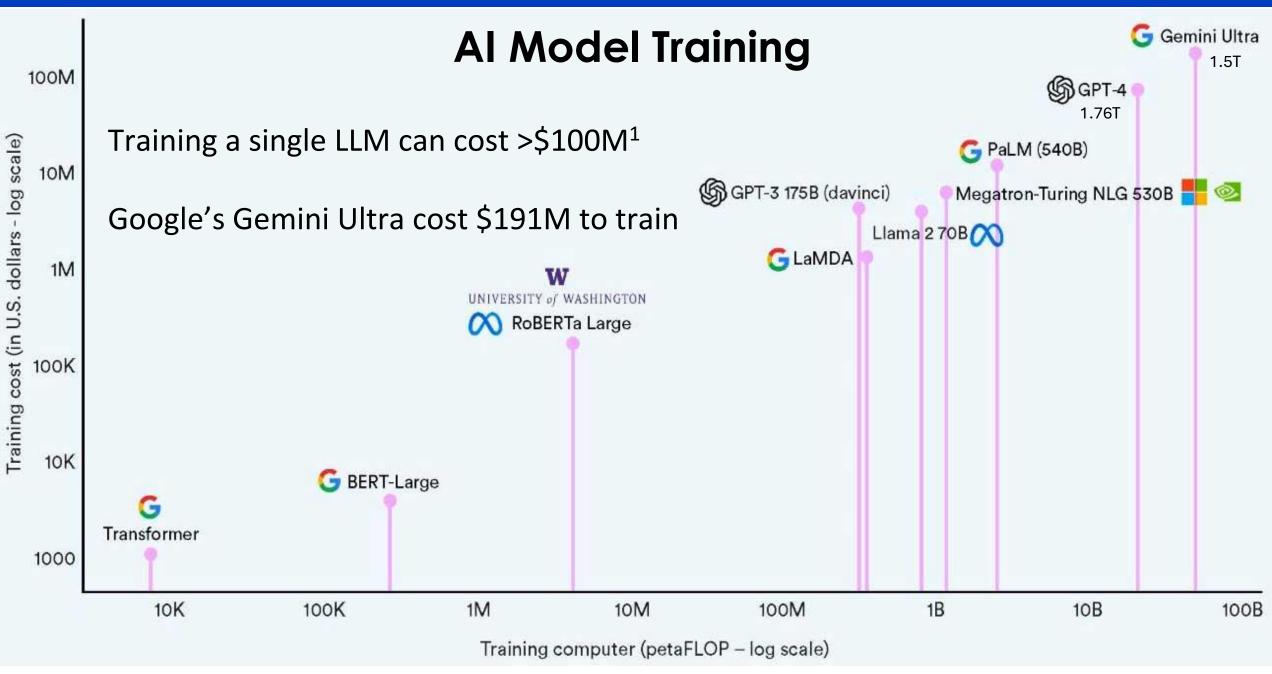

Energy System Resiliency

Environmental Impacts

Intelligent and Autonomous Plants

Al-Enhanced Cybersecurity




Al's Impact on Load Growth

Data Center Load Growth

- The International Energy Agency (IEA) predicted that datacenter energy usage will double from 2022-26¹
 - Load growth expected from both AI and cryptocurrency mining

1 https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf

1 https://pureai.com/Articles/2024/04/23/Open-Source-Models-Cost.aspx

Image from: https://pureai.com/Articles/2024/04/23/Open-Source-Models-Cost.aspx

Al is Accelerating Data Center Load Growth

Challenge

- Data centers are growing at a pace faster than utilities can site and build generation
- AI data centers utilize more energy than traditional data centers
 - Some estimate as much as
 5X the energy consumption

Proposed Solution

- Utilize data centers as a grid asset in a shared energy economy
- Flex data center usage to adapt to local conditions
- Utilize data center backup generators using clean fuels (HVO, RNG, etc.)

EPRI's Role

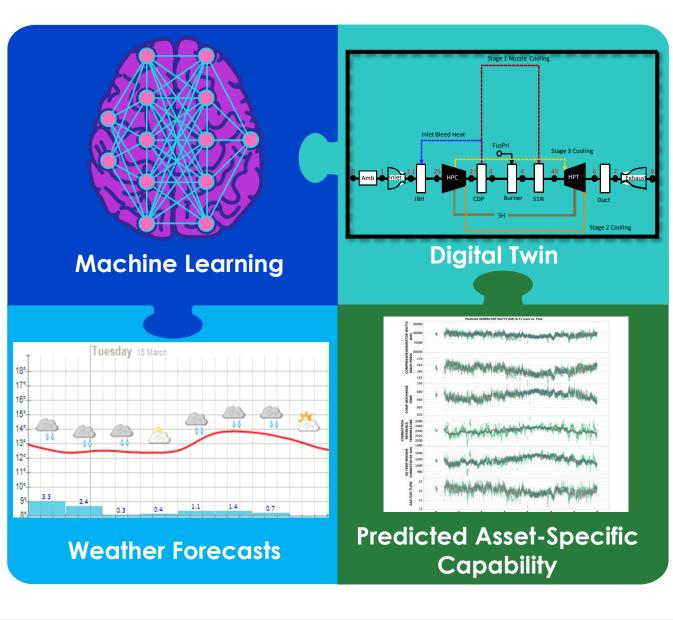
- Gather input
- Perform R&D to understand the benefits & limitations of a shared energy economy model
- Continue R&D on clean fuels
- Engage global stakeholders to share data and results

For more details, see EPRI Report: <u>Powering Intelligence: Analyzing</u> <u>Artificial Intelligence and Data Center</u> <u>Energy Consumption</u>

EPRI

Core Drivers Toward Clean Energy Transition Goals

Maximize the utilization of existing assets with cost-competitive operations

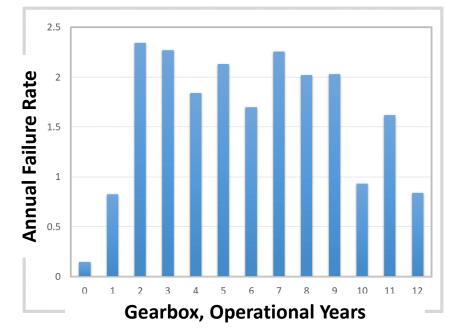

- Life extension
- Power uprates and enhanced efficiency
- Streamlined maintenance for higher capacity factors
 - Improved inspection, mitigation, and repair

Performance & Dispatch Optimization with OPTORA Software

- Predicting GT capabilities can be difficult
 - Weather, Availability, Operating Conditions, & Noisy Data affect results
- OPTORA uses AI to eliminate guesswork
- Performance Predictions
 - ML model trained on Historian data
 - Model predicts weather conditions
- Dispatch Optimization
 - Algorithm selects dispatch order based on:
 - Augmentation, Fuel Costs, Startup/Shutdowns, Weather Impacts
 - Balances plant efficiency and reliability

EPR

Physics-Based Machine Learning Model for Wind Turbine Drivetrain Health Monitoring


Objectives and Scope

- Identify key factors impacting wind turbine gearbox & generator life
- Develop AI models to identify early-stage degradation
- Validate monitoring methods using historic failure data

Value

- Effective health monitoring at M&D centers
- O&M cost reduction via preventive maintenance
- Turbine life extension and inventory management

Financial Impact: Each gearbox failure event may lead to more than \$350,000 of unplanned repair costs

Efficient health monitoring techniques can save >\$1M/year at a typical wind farm

AI-Enabled Fuel Failure Identification

Scope and objectives

- Develop an AI-based system for fuel failure identification in nuclear reactors.
- Extract additional characteristic information (such as power and Burnup) about failed fuel for optimization.

Value

- Enhance failed fuel detection efficiency and resolution.
- Improve fuel management decisionmaking processes.

- Opportunities for member engagement
 - Nuclear Fuel Reliability Program TAC meetings.

Efficiently detect fuel failures and provide insights for optimized decision-making

Drones and AI Converge for T&D Asset Inspections

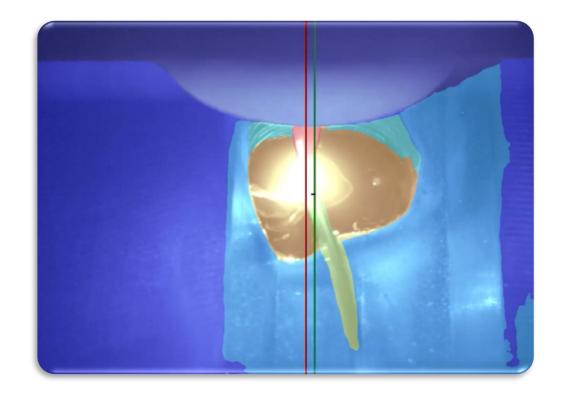
- Notable failures of transmission and distribution (T&D) equipment has highlighted the need for inspections of these aging infrastructure components
- The use of drones has <u>multiplied</u> the ability of utilities to collect <u>vast quantities of images</u>
- However, the ability to collect images has <u>outpaced</u> the utilities' ability to analyze the images

Al can augment a utility's ability to evaluate T&D inspection imagery

AI-Assisted Manual UT

Scope and objectives

- Develop live Al-assistance for manual phased array ultrasonic inspections
- Initial target: *dissimilar metal welds*


Value

- Assist inspector during live examinations, flagging anomalous regions
- Enabling data records for subsequent review
- Opportunities for member engagement
 - NDE Program Research Integration Committee

Enabling live AI-assistance for manual phased-array UT inspections

Adaptive Feedback Welding

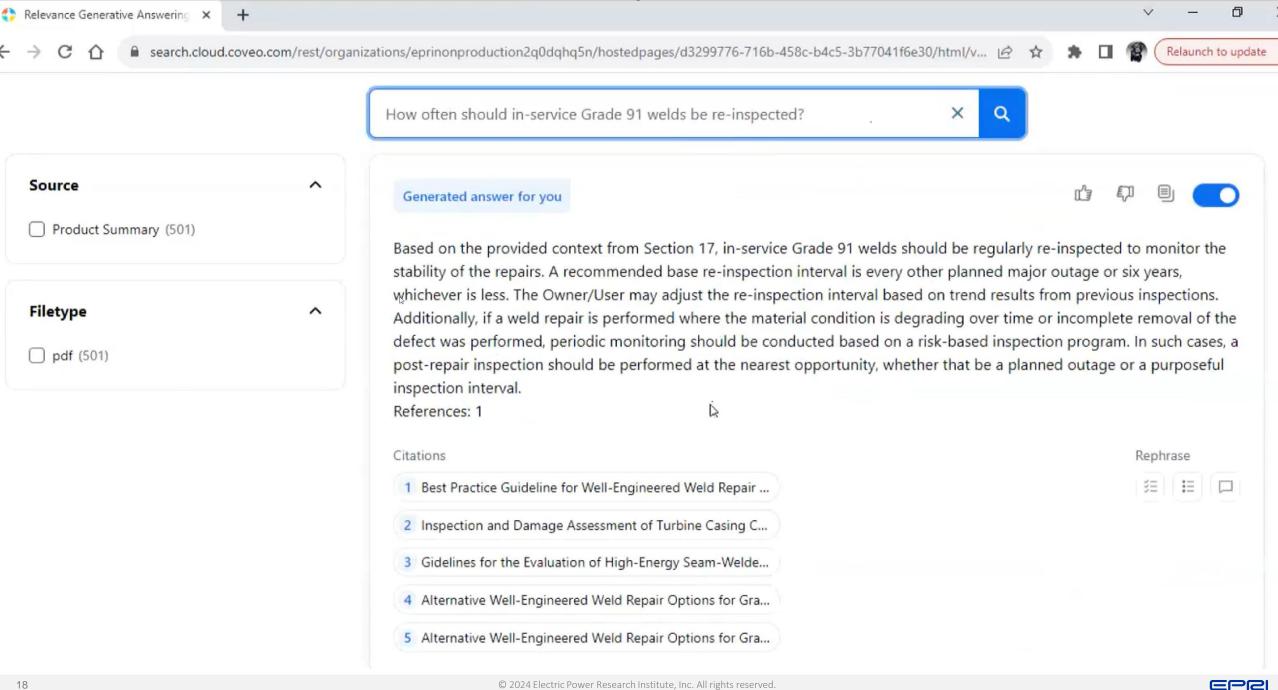
- Scope and objectives
 - Develop fully-automated welding system that functions as a welding operator using real-time sensor data with machine learning/AI
- Value
 - Fully automated welding reduces post-weld repairs and offsets welder workforce supply issues
 - Increases safety by removing welding operators from hazardous (i.e., radiation) working environments
- Project status and key updates
 - Real-time closed loop control successfully demonstrated
 - Progress made on adaptive groove filling

- Opportunities for member engagement
 - Liburdi Dimetrics purchased a license for the technology and is incorporating into their welding systems

Commercialization of technology has been achieved!

Generative Al R&D

Parallel Paths for Generative AI


EPRI.com Search

- Working with generative AI to provide EPRI members with the best answer they have access to.
 - Provides additional value to EPRI members; faster access to answers
 - Protects EPRI IP

Program-Specific Expert Systems

- Developing pilot projects for expert systems.
 - Capable of providing more in-depth answers for program-specific questions
 - Ability to fine-tune models to be more accurate and answer common questions
 - Primarily using retrieval augmented generation (RAG)

Generative AI Beta Test on EPRI.com

How often should in-service Grade 91 welds be re-inspected?		
Generated answer for you Generative AI Answer: Based on the provided context from Section 17, in-service Grade 91 welds should be regularly re-inspected to monitor recommended base re-inspection interval is every other planned major outage or six years, whichever is less. The Own Inspection interval based on trend results from previous inspections. Additionally, if a weld repair is performed where the degrading over time or incomplete removal of the defect was performed, periodic monitoring should be conducted base program. In such cases, a post-repair inspection should be performed at the nearest opportunity, whether that be a play inspection interval. References: 1 Citations 1 Best Practice Guideline for Well-Engineered Weld Repair 2 Inspection and Damage Assessment of Turbine Casing C 3 Gidelines for the Evaluation of High-Energy Seam-Welde 4 Alternative Well-Engineered Weld Repair Options for Gra	the material condition is ased on a risk-based inspection	Section 17: Post-Repair Inspection Interval as ingle event. Regular re-inspection of in-service repairs in Grade 91 welds is recommended to monitor the stability of the repairs. A recommended base re-inspection interval is every other planned major outage or six years, whichever is less. The Owner/User may expand or compress the re-inspection interval based on trend results from previous inspections.
Results 1-10 of 501 for How often should in-service Grade 91 welds be re-inspected? Product Summary Regular Search Results	Sort by: Relevance	Text from EPRI Report 3002003833

Alternative **Weld**-Engineered **Weld** Repair Options for **Grade 91** Steel: A Review of Service Experience for Repairs Performed to **Welding** Methods 6 and 7

Alternative Weld-Engineered Weld Repair Options for Grade 91 Steel A Review of Service ... In this example, the utility was self-insured and accepted the risk of the repair approach for a main ...

Early beta testing shows potential to provide correct responses and references with low hallucinations

EPRI

Using Gen Al for Asset Maintenance

Asset	# CBL-003-AL3		
Asset Name*			
Lower Gas Generator Circulating Wate	er Pump Tu 🗸 🗸		
Location		nati)
XYZ Gas Generator		ample Data	
System Status	FX	anie	
Utility XYZ	-		
Last Serviced			
Sun Aug 20 2023			
Maintenance Requests (3)			
Maintenance Orders (7)			

Here are some things you can ask about Lower Gas Generator Circulating Water Pump TurboFlex:

Cybersecurity Concerns for Al

Key Emerging Opportunities and Threats

<u>AI</u>

Opportunities

- Energy generation and grid optimization
- Generative AI, ChatGPT for utilities
- Automate data analysis
- Perform predictive maintenance
- AI-enhanced cybersecurity

Threats

- Text, audio, and video phishing/smishing & Alassisted hacking, including deepfakes.
- Loss of confidential data or liability due to sharing/using information via Generative AI tools.

<u>Quantum</u>

Opportunities

- Quantum Computing / Quantum machine learning
- Quantum Sensors
- Quantum Communications/Cybersecurity

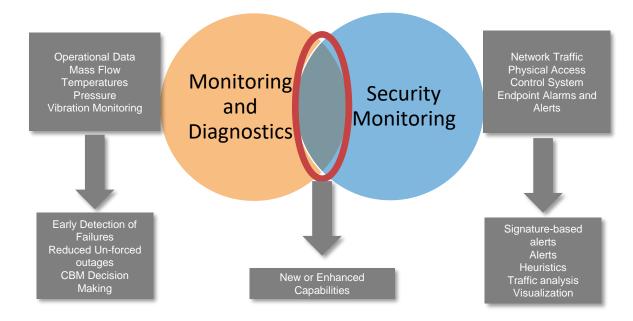
Threats

 Quantum cybersecurity – protect from "harvest data now, decrypt later" attacks.

EPR

Al-Enhanced Cybersecurity

Objectives and Scope


- Enhancing capabilities by bringing together the digital cyber and M&D data feeds
- Advanced cyber detection by integrating operational alerts
- Determine the best ways to utilize data sets to enhance cyber detection capabilities

Potential Impact

- Providing greater insight into operations and related cyber security concerns real-time
- Better alerts for configuration changes
- Visibility for non-networked assets

Value


- Increase operation security
- Improve alarm management for M&D centers

Data Sets	 Lab generated cyber attack data combined with sensor data M&D center data (e.g., I4Gen data) Images of lab cabinets
Al Approaches	 NNs or other supervised learning algorithms to mimic standard M&D center software Potentially computer vision tools

Discussion

- How can EPRI work with you to maximize value from AI?
- What are you doing at your organization with AI?
- How are your Al activities organized and led?

EPR

Conclusions

- AI is a valuable tool for a wide range of power industry use cases.
 - AI can help automate tasks, improve worker efficiency, and enhance productivity.
 - AI can be used both offensively and defensively for cybersecurity.
- However, Al requires significant energy to train models.
 - Future enhancements may reduce energy needs.
- While significant advancements have been made, additional work and progress are needed.

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved

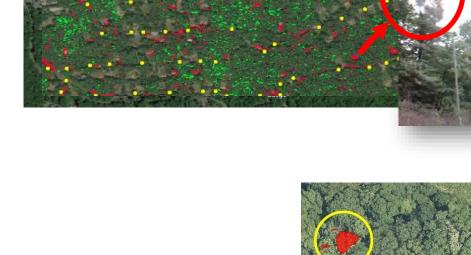
Multi Spectral Satellite Data for Environmental and Vegetation Related Use Cases

Objectives and Scope

- Establish data framework for acquisition, curation, and sharing satellite imagery
- Evaluate and document most valuable use-cases for the electric power industry

Potential Impacts

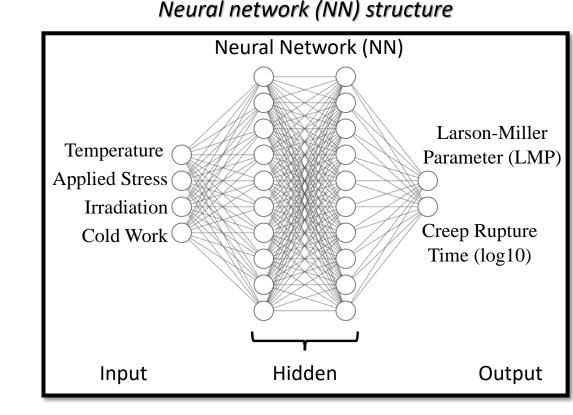
Industry repository to collaborate on valuable use cases


Value

- Reduce costs for vegetation management
- Identify and remediate outage risks in advance

Data Set	Vegetation Imagery
AI	Change Detection and
Approach	Supervised Learning

Multi-Spectral Satellite Data Can Support Dozens of Industry Use Cases


AI for Materials Qualification for Advanced Reactors

Scope and objectives

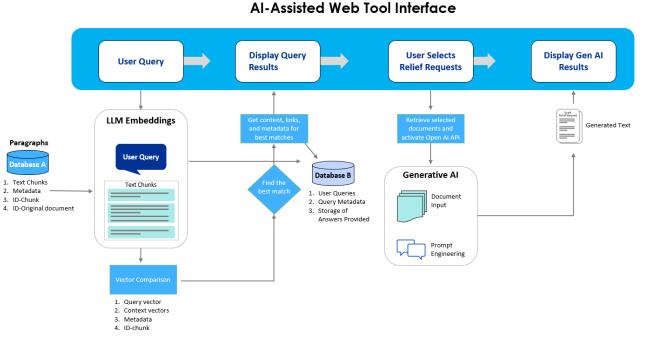
- Utilize AI to streamline materials testing to minimize prediction errors.
- Understanding creep behavior will be critical for Gen. IV reactors.

Value

- AI/ML modeling could be an effective tool in predicting creep behavior.
- Code qualification timelines for Gen. IV materials could be expedited.

Al-enabled mechanical property prediction may allow for more time- and costeffective approaches to understand materials degradation for advanced reactors.

PM: Wynter McGruder

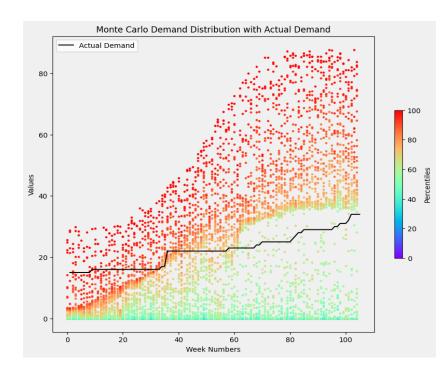

AI-Assisted Relief Request (RR) Development and Knowledge Transfer

Scope and objectives

- Use LLM and AI to develop webtool to mine/curate RR datasets based on component, historical precedent, relief basis, and othe complex metadata from NRC ADAMs
- Use LLM and AI to identify broad emerging trends, new precedents, and pattens in RR submittals to determine areas where additional research is needed
- Use generative AI to develop critical sections of a new RRs basec on past RRs and historical precedent

Value

- Provide licensees/EPRI members a tool to significantly improve
 D-Original document
 D-Original document
- Address knowledge gaps in the regulatory submittal process for new-to-the-industry utility staff
- Project status and key updates
 - Webtool to mine/curate RR datasets has been developed and undergone initial internal (EPRI) testing – Currently making updates and expanding capabilities based on initial feedback
 - Webinar on 4/24/24 introduced generative AI concept and initial testing to members to gain potential user group/alpha test participants: <u>RR Index Overview Webinar</u>
 - Generative AI webtool development use case testing in progress


- Opportunities for member engagement
 - User Group/Alpha Testers for Webtool functionality and features

AI and Machine Learning for RR Development

AI to Inform Reorder Parameters

Scope and objectives

- Develop a proof-of-concept AI model to accurately predict spare part usage, where it has historically been difficult to predict, and conservatively over-predicted to avoid the consequences of not having parts available when needed.
- Evaluate the model predictions against actual utility usage and purchase data to determine if it would have resulted in a cost savings without impacting availability.
- Publish a technical update report to document the results, evaluation, and recommendations for next steps.
- Value
 - If successful, the model could be used to reduce the quantity of items purchased and stocked in inventory (reducing associated procurement costs, storage and handling costs, and ad-valorem taxes) without sacrificing spare part availability.
- Project status and key updates
 - Exploratory data analysis and model development completed
 - Model simulations are being run, and model evaluation in progress
 - Model will be tweaked based on results of evaluation
 - Initial draft of technical update report started

- Opportunities for member engagement
 - Procurement Engineering and Related Topics (PEART) User Group
 - Possible pilot site model implementation as proposed future project, based on results of proof-of-concept

Data analysis shows ~40% of items planned for work are never used, representing an opportunity for improved "data driven" purchase decisions that could lead to cost savings and reduced effort