

REPORT

2024 Annual CCR Groundwater Report

Nebraska Public Power District, Sheldon Station

Submitted to:

Nebraska Public Power District

Sheldon Station, 4500 West Pella Road Hallam, Nebraska 68368

Submitted by:

WSP USA Inc.

7245 W. Alaska Drive Ste. 200, Lakewood, CO 80226

+1 303 980 0540

GLA21457062.5798-003-RPT-0

October 25, 2024

Executive Summary

This report presents results from the 2024 Coal Combustion Residuals (CCR) groundwater monitoring program events at Nebraska Public Power District's Sheldon Station Ash Landfill 4. The facility entered 2024 under a detection monitoring program and remains in detection monitoring based on the results of the first (Q1) and third (Q3) quarter 2024 detection monitoring sampling and analysis events.

The following items of statistical significance were identified as a result of the 2024 sampling events:

- Sulfate at AP4-MW2 (upgradient) was reported as a potential exceedance for Q3 2023 within the 2023 annual report (WSP 2023) and was determined to be a false positive following confirmatory sampling.
- Sulfate at AP4-MW5 was identified as a potential exceedance for Q1 2024 and determined to be a false positive following confirmatory sampling.
- Chloride at AP4-MW7 was identified as a potential exceedance for Q1 2024 and determined to be a false positive following confirmatory sampling.
- Field-measured pH at AP4-MW6 was identified as a potential exceedance for Q1 2024 and determined to be a false positive following confirmatory sampling.
- Potential exceedances were identified for the following well-parameter pairs for the Q3 2024 sampling event.
 Confirmatory samples will be collected prior to determination of verified statistical significance.
 - Field-measured pH at AP4-MW3
 - Field-measured pH at AP4-MW4
 - Field-measured pH at AP4-MW7

The monitoring program for Ash Landfill 4 remains in detection monitoring entering 2025.

Table of Contents

1.0	INTRO	DDUCTION	.1
	1.1	Facility Information	.1
	1.2	Purpose	.1
2.0	GROL	JNDWATER MONITORING NETWORK PROGRAM STATUS	.1
	2.1	Completed Key Actions in 2024	.1
	2.2	Installation and Decommissioning of Monitoring Wells	.1
	2.3	Problems and Resolutions	.2
	2.4	Proposed Key Activities for 2025	.2
3.0	GROL	JNDWATER MONITORING ANALYTICAL PROGRAM STATUS	.3
	3.1	Samples Collected	.3
	3.1.1	Groundwater Elevation and Flow Rate	.3
	3.2	Monitoring Data (Analytical Results)	.3
	3.3	Comparative Statistical Analysis	.3
	3.3.1	Definitions	.4
	3.3.2	Potential Exceedances	.4
	3.3.3	False Positives	.5
	3.3.4	Verified Exceedances	.5
	3.4	Program Transitions	.5
	3.4.1	Detection Monitoring	.5
	3.4.2	Alternative Source Demonstrations	.5
	3.4.3	Assessment Monitoring	.5
	3.4.4	Corrective Measures and Assessment	.5
4.0	RECO	DMMENDATIONS AND CLOSING	.6
5.0	REFE	RENCES	.8

TABLES

Table 1: Data Summary Table – AP4-MW1 (U) Table 2: Data Summary Table – AP4-MW2 (U) Table 3: Data Summary Table – AP4-MW3 Table 4: Data Summary Table – AP4-MW4 Table 5: Data Summary Table – AP4-MW5 Table 6: Data Summary Table – AP4-MW6 Table 7: Data Summary Table – AP4-MW7 Table 8: Sheldon Station Ash Landfill No. 4 Groundwater Levels Table 9: Comparative Statistics – AP4-MW1 (U) Table 10: Comparative Statistics – AP4-MW2 (U) Table 11: Comparative Statistics – AP4-MW3 Table 12: Comparative Statistics – AP4-MW4 Table 13: Comparative Statistics – AP4-MW5 Table 14: Comparative Statistics – AP4-MW6 Table 15: Comparative Statistics – AP4-MW7

FIGURES

Figure 1: Ash Landfill No. 4, Groundwater Contours, February 2024 Figure 2: Ash Landfill No. 4, Groundwater Contours, September 2024 Figure 3: Ash Landfill No. 4 Groundwater Elevations

APPENDICES

Tables

Figures

APPENDIX A Q1 2024 Semi-annual Report

APPENDIX B Q3 2024 Semi-annual Report

1.0 INTRODUCTION

WSP USA Inc. (WSP) prepared this report describing the 2024 Coal Combustion Residuals (CCR) groundwater sampling events and comparative statistical analysis for Nebraska Public Power District's (NPPD) Sheldon Station Ash Landfill No. 4 (AP4; the Site) in Hallam, Nebraska. This report was written to meet the requirements of the Site's permitted Sampling and Analysis Plan (SAP) as approved by the Nebraska Department of Environment and Energy (NDEE) (GAUSA 2022a) and the federal CCR Rule's Sections on groundwater monitoring and corrective action, 40 Code of Federal Regulations (CFR) 257.90 to 257.98, along with applicable revisions to the CCR Rule.

1.1 Facility Information

Sheldon Station is owned and operated by NPPD and can generate 225 megawatts (MW) of power. The facility is located in southeastern Nebraska in Section 19, T7N, R6E, and is 18 miles south of Lincoln in Lancaster County. The village of Hallam is the closest community to the site and is 1.5 miles south of the facility. NPPD constructed Sheldon Station in 1958, switching the facility entirely to low-sulfur coal from Wyoming's Powder River Basin in 1974. The active CCR landfill at the site (AP4) contains fly ash and bottom ash.

1.2 Purpose

The United States Environmental Protection Agency's (USEPA) CCR Rule established specific requirements for reporting of groundwater monitoring and corrective action at CCR facilities in 40 CFR 257.90 to 40 CFR 257.98 (USEPA 2015). Per part (e) of 40 CFR 257.90, no later than January 31, 2018, and annually thereafter, owners or operators of active CCR units must prepare an annual groundwater monitoring and corrective action report. The permitted SAP for AP4 was developed to comply with both the federal CCR regulations and separate NDEE requirements (GAUSA 2022a). In addition to the annual report for the federal CCR requirements, semi-annual reports are also prepared following each semi-annual sampling event, at the request of the NDEE. The annual report serves as a combined version of the two semi-annual reports.

2.0 GROUNDWATER MONITORING NETWORK PROGRAM STATUS

The groundwater monitoring network for the active CCR landfill at Sheldon Station consists of seven monitoring wells as shown in Figure 1 and Figure 2. The two upgradient monitoring wells are AP4-MW1 and AP4-MW2, which are marked by (U) throughout the text. The five downgradient monitoring wells are AP4-MW3, AP4-MW4, AP4-MW5, AP4-MW6, and AP4-MW7.

2.1 Completed Key Actions in 2024

A detection monitoring sampling event was completed during the first quarter (Q1) of 2024, with an associated semi-annual report provided to the NDEE within 30 days of the end of the quarter. Results of the Q1 2024 sampling event have been placed in the facility operating record and are discussed in this annual report.

A detection monitoring sampling event was completed during the third quarter (Q3) of 2024, with an associated semi-annual report provided to the NDEE within 30 days of the end of the quarter. Results of the Q3 2024 sampling event have been placed in the facility operating record and are discussed in this annual report.

2.2 Installation and Decommissioning of Monitoring Wells

No monitoring wells were installed or decommissioned at Sheldon Station during 2024.

2.3 **Problems and Resolutions**

During both the Q1 2024 and Q3 2024 monitoring events, analysis by Method 9056A required dilution due to the sample matrix, resulting in non-detects with elevated reporting limits for several well-parameter pairs. Results are consistent with past results and required dilutions. The following well-parameter pairs were reported as non-detects with elevated reporting limits:

- chloride, 5x dilution factor, elevated reporting limit equals 5.0 milligrams per liter (mg/L) in Q1 and Q3 2024: AP4-MW3, AP4-MW4, and AP4-MW6
- fluoride, 5x dilution factor, elevated reporting limit equals 1.00 mg/L in Q1 and Q3 2024, unless noted otherwise: AP4-MW1 (U; Q3 only), AP4-MW2 (U), AP4-MW5, and AP4-MW7

During evaluation of the analytical report for the Q1 2024 detection monitoring event, a number of issues were identified and requested for review by Eurofins Environment Testing Cedar Falls (Eurofins), the contracted analytical laboratory. Eurofins reviewed and revised the analytical report for the Q1 2024 detection monitoring report to address the following issues:

- The sample collected from AP4-MW2 (U) was re-analyzed for fluoride at a 5x dilution. The sample was initially reported at a 10x dilution. The result of the re-analysis was more consistent with past results for the well-parameter pair.
- In the original analytical report, AP4-MW3 was found to have a data entry error where the results for chloride and fluoride had been switched within the report. Both parameters are analyzed by Method 9056A.
- The samples for AP4-MW4 and AP4-MW5 were re-analyzed to confirm the original reported results for sulfate. The lab found the original results to be acceptable.

On the field notes for the Q1 2024 event, the date for collection of the samples at AP4-MW4 was noted as February 27, while the chain-of-custody included with the analytical report indicated sample collection occurred on February 26. In discussion with the NPPD staff that collected the samples, the February 26 date shown on the chain-of-custody was the correct sample collection date. No other problems were encountered as part of the field sampling in Q1 2024.

During review of the Q3 2024 analytical report, a request was made to Eurofins as the contracted analytical laboratory to confirm the reported results for calcium, sulfate, and total dissolved solids, due to differences in the results of the Q3 2024 event when compared to the Q1 2024 event. Eurofins confirmed that no issues were identified with the analysis or quality control associated with the results. Additionally, Eurofins noted that sulfate at AP4-MW5 had been analyzed twice using two different dilution factors, with the results of the two separate analyses found to be internally consistent. While the Q3 2024 results for calcium, sulfate, and total dissolved solids at AP4-MW5 vary from the Q1 2024 results, they are consistent with past results at the well. No changes were made to the analytical report as a result of the sample confirmation.

No other problems were encountered as part of the field and laboratory sampling in Q3 2024.

2.4 Proposed Key Activities for 2025

Detection monitoring sampling events are planned for the first and third quarters (Q1 and Q3) of 2025). The detection monitoring sampling events will consist of sampling, data review, and comparative statistical analysis. Following each detection monitoring sampling event, semi-annual reports will be provided to the NDEE and

placed in the facility operating record, and an annual report will be prepared to meet the requirements of the federal CCR rule.

3.0 GROUNDWATER MONITORING ANALYTICAL PROGRAM STATUS

Analytical activities associated with the groundwater monitoring program are described below.

3.1 Samples Collected

NPPD staff collected eight initial baseline samples on a quarterly basis between September 15, 2015, and May 16, 2017, at each of the two upgradient and five downgradient monitoring wells. Detection monitoring samples have been collected on a semi-annual basis beginning on September 19, 2017. This report outlines the results of the detection monitoring sampling event that occurred on September 3, 2024. Specific dates for each sample collected as part of the program are provided in Table 1 through Table 7.

3.1.1 Groundwater Elevation and Flow Rate

Groundwater elevations were measured in each well during each sampling event prior to purging. Elevation measurements can be found in Table 8. Groundwater elevations and interpolated groundwater contours from the February 2024 (Q1 2024) detection monitoring sampling event and the September 2024 (Q3 2024) detection monitoring sampling event are shown in Figure 1 and Figure 2, respectively. Figure 3 shows groundwater elevations over time at the site.

The groundwater flow rate across Ash Landfill 4 was estimated with the equation $V_s = k \times i/n_e$, where:

- V_s is the groundwater flow rate, in feet per day (ft/day).
- k is the hydraulic conductivity in ft/day, estimated at 0.005 ft/day from slug testing results from system wells.
- *i* is the hydraulic gradient in feet per feet (ft/ft), calculated based on groundwater elevations during each monitoring event.
- n_e is the effective porosity, a unitless parameter, estimated to be 0.2 for site soils.

The average groundwater flow rate for February 2024 was estimated to be 7 x 10⁻⁴ ft/day, based on the calculated hydraulic gradient for February 2024 of 0.028 ft/ft.

The average groundwater flow rate for September 2024 was estimated to be 7 x 10^{-4} ft/day, based on the calculated hydraulic gradient for September 2024 of 0.028 ft/ft.

3.2 Monitoring Data (Analytical Results)

Analytical results for the detection monitoring results for the February 2024 and September 2024 monitoring events are shown in Table 1 through Table 7.

3.3 Comparative Statistical Analysis

Comparative statistical analysis was conducted using the results of the most recent baseline update conducted prior to the Q1 2022 detection monitoring event (GAUSA 2022b) following guidance provided by the USEPA (2009). The results of the comparative statistical analysis are summarized below and presented in Table 9 through Table 15. A full description of the steps taken for the comparative statistical analysis can be found in the Groundwater Monitoring Statistical Methods Certification (GAI 2017a).

3.3.1 Definitions

The following definitions are used in discussion of the comparative statistical analysis:

- Statistically significant increase (SSI)—defined as a result that exceeds the statistical limit established by the baseline statistical analysis, which has been verified by confirmatory re-sampling and analysis.
- Elevated cumulative summation (CUSUM)—occurs when the calculated CUSUM value is greater than the Shewhart-CUSUM limit established by the baseline statistical analysis, but the analytical result does not exceed the Shewhart-CUSUM limit. An elevated CUSUM is an indication that concentrations are gradually changing and that analytical results may exceed the Shewhart-CUSUM limit in the future. In the case of twotailed analysis for field pH, an elevated CUSUM can also occur below the lower Shewhart-CUSUM statistical limit.
- Potential exceedance—defined as an initial elevated CUSUM or an analytical result that exceeds the Shewhart-CUSUM limit or non-parametric prediction limit established by the baseline statistical analysis. Confirmatory re-sampling will determine if a potential exceedance is a false positive or a verified SSI. Non-detect results that exceed either the Shewhart-CUSUM limit or the non-parametric prediction limit are not considered potential exceedances.
- False positive—defined as an analytical result or elevated CUSUM that exceed the associated statistical limit, but can be clearly attributed to laboratory error, changes in analytical precision, or is invalidated through confirmatory re-sampling. False positives are not used in calculation of any subsequent CUSUM values.
- Confirmatory re-sampling—designated as the next sampling event.
- Verified exceedances (verified SSIs)—interpreted as two consecutive samples exceeding the statistical limit (the original sample and the confirmatory re-sample, or two consecutive elevated CUSUMs, or a combination of a sample result and an elevated CUSUM in either order) for the same parameter at the same well.

3.3.2 Potential Exceedances

The following potential exceedances were identified for the Q1 2024 sampling event:

- AP4-MW5, sulfate
- AP4-MW6, field-measured pH low elevated CUSUM
- AP4-MW7, chloride elevated CUSUM

Confirmatory samples were collected to determine whether the results were false positives or verified SSIs, with results discussed below in subsequent sections.

The following potential exceedances were identified for the Q3 2024 sampling event:

- AP4-MW3, field pH low elevated CUSUM
- AP4-MW4, field pH low elevated CUSUM
- AP4-MW7, field pH low elevated CUSUM

Confirmatory re-samples will be collected to determine whether the results are false positives or verified SSIs.

3.3.3 False Positives

For the potential exceedance identified for sulfate at AP4-MW2 (U) during the Q3 2023 detection monitoring event, confirmatory sampling indicated that the result was a false positive.

The following results that were identified as potential exceedances for the Q1 2024 sampling event were determined to be false positives following confirmatory re-sampling:

- AP4-MW5, sulfate
- AP4-MW6, field-measured pH
- AP4-MW7, chloride

3.3.4 Verified Exceedances

No verified SSIs were identified for either the Q1 2024 or the Q3 2024 detection monitoring events.

3.4 Program Transitions

Beginning in Q3 2017, the groundwater monitoring program at Sheldon Station transitioned from the initial baseline period to detection monitoring. During the initial baseline period, eight independent samples from each well within the program were collected and analyzed for the constituents listed in Appendix III and Appendix IV of the federal CCR Rule prior to October 17, 2017, as specified in 40 CFR 257.94(b).

3.4.1 Detection Monitoring

Samples for the detection monitoring program are collected on a semi-annual basis, beginning with the sample collected in September 2017. NPPD plans to continue to collect semi-annual samples under the detection monitoring program in the first and third quarters of 2025.

3.4.2 Alternative Source Demonstrations

Results collected in 2024 for the detection monitoring program did not include items of verified statistical significance, and consequently, no alternative source demonstrations were conducted in 2024. Results of previous alternative source demonstrations have been included in prior annual reports (see for instance GAI 2021 and GAUSA 2022b).

3.4.3 Assessment Monitoring

The current groundwater monitoring program at Sheldon Station is not in assessment monitoring. Assessment monitoring has not been triggered as described in the permitted SAP (GAUSA 2022a).

3.4.4 Corrective Measures and Assessment

The current groundwater monitoring program at Sheldon Station does not indicate the need for corrective measures. An assessment of corrective measures has not been required. No alternative source demonstration stemming from statistically significant levels of assessment monitoring Appendix IV parameters identified as part of an assessment monitoring program has been made. No actions are required at this time.

4.0 RECOMMENDATIONS AND CLOSING

This report presents the results for the CCR detection monitoring events that occurred on February 26, 2024 and September 3, 2024, along with the associated comparative statistical analysis, for NPPD's Sheldon Station Ash Landfill No. 4.

As described in the Groundwater Monitoring System Certification (GAI 2017b) and the Groundwater Monitoring Statistical Methods Certification (GAI 2017a), the groundwater monitoring and analytical procedures meet the general requirements of the CCR Rule and the permitted SAP (GAUSA 2022a), and modification to the monitoring network and sampling program are not recommended at this time.

Signature Page

WSP USA Inc.

Erin L. Hunter, PhD, PE *Lead Consultant*

ELH/JJS/af

Jacob J. Sauer, PE *Vice President*

https://wsponline.sharepoint.com/:w:/r/Sites/Global-NPPD2023GWQualityRep/Project%20Files/6%20Deliverables/GLA21457062.5798/003-RPT-2024_Annual_CCR_GW_Rpt_NPPD_SS/ Rev0/GLA21457062.5798-003-RPT-0-2024_Annual_CCR_GW_RPT_NPPD_SS_250CT24.docx

5.0 **REFERENCES**

- GAI (Golder Associates, Inc.). 2017a. Groundwater Monitoring Statistical Methods Certification, Sheldon Station Ash Landfill No. 4. October 11, 2017.
- GAI. 2017b. Coal Combustion Residuals Landfill Groundwater Monitoring System Certification. October 11, 2017.
- GAI. 2021. 2021 Annual CCR Groundwater Report, Nebraska Public Power District, Sheldon Station. October 27, 2021.
- GAUSA (Golder Associates USA Inc.). 2022a. Sampling and Analysis Plan Permit No. NE0204285, Sheldon Station Ash Landfill No. 4. March 1, 2022.
- GAUSA. 2022b. Baseline Update for Groundwater Quality Monitoring at Nebraska Public Power District's Sheldon Station. April 6, 2022.
- USEPA (United States Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. Office of Resource Conservation and Recovery. EPA-R-09-007. March 2009.
- USEPA. 2015. Code of Federal Regulations Title 40 Part 257: Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities. April 17, 2015.

Tables

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 1: Data Summary Table - AP4-MW1

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Background	d Collection					I	I	I	I	I	Detecti	ion Monito	ring ¹	1 1			I	I	
Appendix III																								
Boron, Total	mg/L	0.0784	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.130	< 0.100	< 0.100
Calcium, Total	mg/L	89.8	90.4	95.1	103	93.0	88.3	103	92.3	91.0	99.6	82.4	94.2	93.7	85.3	94.0	96.2	93.7	92.6	101	85.2	99.4	79.5	92.8
Chloride	mg/L	22.5	7.05	5.57	6.43	6.24	11	5.37	7.48	7.47	6.52	5.61	6.15	1.18	6.74	7.27	7.13	7.17	6.81	7.59	7.19	7.33	7.57	7.54
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22	1.2	0.846	0.723	1.07	0.194	0.552	0.816	0.856	0.615	0.611	0.524	0.811	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.95	6.94	7.46	7.26	7.19	7.19	7.32	7.19	7.17	7.36	7.23	7.59	7.60	7.37	7.16	6.8	7.14	7.11	7.20	7.04	6.95	7.10	7.00
Sulfate	mg/L	22.8	23.7	22.2	22.2	22.8	24.5	20.6	21.7	24.4	23.4	19.6	23.2	4.79	25.7	25.3	25.2	27.2	26.2	22.7	23.2	27.3	23.8	22.3
Total Dissolved Solids	mg/L	440	462	428	430	462	464	484	520	464	408	406	416	392	422	396	388	388	396	368	362	400	402	430
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.23	0.258	0.221	0.199	0.193	0.209	0.269	0.231															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0508	0.0513	0.0504	0.0505	0.0506	0.0546	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00725	0.00823	0.00724	0.00647	0.00656	0.00655	0.00883	0.00739															
Radium-226	pCi/L	0.257 ± 0.0866	0.293 ± 0.104	0.35 ± 0.097	0.314 ± 0.0878	0.417 ± 0.111	0.527 ± 0.33	0.208 ± 0.0918	0.373 ± 0.125															
Radium-228	pCi/L	2.14 ± 0.411	2.68 ± 0.446	1.49 ± 0.319	1.19 ± 0.318	1.26 ± 0.383	2.09 ± 0.453	2.02 ± 0.392	1.88 ± 0.383															
Radium-226 + Radium-228	pCi/L	2.397 ± 0.42	2.973 ± 0.458	1.84 ± 0.333	1.51 ± 0.33	1.67 ± 0.399	2.62 ± 0.561	2.22 ± 0.403	2.25 ± 0.403															
Selenium, Total	mg/L	0.00901	0.0123	0.0101	0.00873	0.00826	0.00816	0.0114	0.00999															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 2: Data Summary Table - AP4-MW2

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Background	Collection										Detection I	Monitoring	1						
Appendix III																								
Boron, Total	mg/L	0.0831	< 0.500	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.400	< 0.100	< 0.100	0.111	< 0.100	< 0.100
Calcium, Total	mg/L	335	321	294	320	289	286	342	278	293	331	263	297	291	239	292	296	288	295	336	269	309	290	306
Chloride	mg/L	89.9	93.3	83.6	94.2	92.7	92.5	87	88.6	88.6	94.3	92	87.6	88.8	93.9	106.0	113.0	111	115	99.6	106	111	99.9	99.8
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935	0.677	0.687	< 0.500	0.612	0.702	0.715	< 0.500	< 0.500	0.533	< 0.500	< 0.500	0.544	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.98	6.99	7.37	7.2	7.16	7.13	7.25	7.18	7.16	7.26	7.19	7.44	7.60	7.33	7.09	7.05	7.08	7.09	7.1	6.97	6.97	6.97	6.97
Sulfate	mg/L	884	888	797	804	901	842	774	797	894	879 E	827	923	855	857	874	876	882	933	906	874	1120	873	944
Total Dissolved Solids	mg/L	1720	1840	1700	1830	1900	1790	2360	1780	2210	1650	1680	1730	1570	1740	1620	1680	1620	1560	1680	1380	1750	1610	1630
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.0115	0.0117	0.0107	0.0102	0.00996	0.012	0.0138	0.0103															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0811	0.0754	0.0699	0.0681	0.0523	0.0705	0.0661	0.0694															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00543	0.00555	0.00526	0.00533	0.00519	0.00494	0.00627	0.00491															
Radium-226	pCi/L	0.258 ± 0.0937	0.241 ± 0.0886	0.28 ± 0.0846	0.312 ± 0.0834	0.334 ± 0.097	0.778 ± 0.403	0.25 ± 0.103	0.188 ± 0.0925															
Radium-228	pCi/L	2.02 ± 0.457	2.53 ± 0.497	2.07 ± 0.384	2.2 ± 0.449	2.41 ± 0.467	2.49 ± 0.485	2.01 ± 0.41	2.01 ± 0.405															
Radium-226 + Radium-228	pCi/L	2.278 ± 0.467	2.771 ± 0.505	2.35 ± 0.394	2.51 ± 0.456	2.74 ± 0.477	3.27 ± 0.631	2.26 ± 0.423	2.2 ± 0.415															
Selenium, Total	mg/L	0.714	0.697	0.634	0.706	0.628	0.628	0.779	0.657															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														['	

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: piccuries per liter

E: Result exceeded calibration range.

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 3: Data Summary Table - AP4-MW3

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgrour	d Collection		1	1						1	etection N	lonitorina	1						
Appendix III																								
Boron, Total	mg/L	0.0687	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	82.4	85.9	89.8	88.5	87.5	85	95.8	86.1	83.7	92.3	74.7	88.5	87.8	81.1	84.1	88.4	88.3	84.3	94.5	78.8	88.5	78.1	84.9
Chloride	mg/L	12.4	< 5.00	< 5.00	< 5.00	6.94	5.4	< 5.00	5.18	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82	1.2	1.29	1.05	1.29	1.24	1.24	1.34	1.33	0.914	0.972	0.717	1.23	1.14	1.27	1.21
Field pH	pH units	7.15	7.21	7.60	7.38	7.30	7.34	7.39	7.40	7.28	7.48	7.43	7.69	7.60	7.56	7.3	6.55	7.36	7.27	7.40	7.14	7.13	7.16	7.08
Sulfate	mg/L	33.2	24.4	25.2	34.6	31.2	29	20.6	21.7	33.2	30.7	20	35	32.3	30.3	26.7	22.9	29.2	22.3	21	19.3	17.7	20.0	19.1
Total Dissolved Solids	mg/L	418	460	390	420	488	430	428	442	494	404	374	426	378	374	378	348	344	354	326	318	360	360	340
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.218	0.235	0.225	0.222	0.206	0.232	0.271	0.238															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0502	< 0.0500	0.0519	< 0.05	< 0.05	0.0538	0.0520	0.0547															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00922	0.0101	0.00992	0.00873	0.00928	0.00978	0.0116	0.00983															
Radium-226	pCi/L	0.401 ± 0.101	0.389 ± 0.106	0.384 ± 0.103	0.501 ± 0.104	0.4 ± 0.102	0.426 ± 0.292	0.318 ± 0.108	0.188 ± 0.0889															
Radium-228	pCi/L	3.69 ± 0.576	2.87 ± 0.491	2.91 ± 0.463	3.42 ± 0.547	2.65 ± 0.477	3.19 ± 0.561	2.35 ± 0.432	2.26 ± 0.422															
Radium-226 + Radium-228	pCi/L	4.091 ± 0.474	3.259 ± 0.502	3.3 ± 0.474	3.92 ± 0.557	3.04 ± 0.487	3.62 ± 0.632	2.67 ± 0.445	2.45 ± 0.431															
Selenium, Total	mg/L	0.0138	0.0164	0.0165	0.0145	0.0152	0.0154	0.0201	0.0191															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 4: Data Summary Table - AP4-MW4

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgro	ound Collection	1									Detect	tion Monit	oring ¹						/
Appendix III																								
Boron, Total	mg/L	0.0674	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	128	123	103	115	111	105	132	95.4	108	109	97.1	100	112	91.9	104	112	109	102	119	100	117	108	117
Chloride	mg/L	13	8.99	< 5.00	6.71	8.55	7.77	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33	1.18	1.2	0.796	1.17	1.12	0.983	1.110	0.989	0.900	0.837	0.626	1.03	< 1.00	1.09	1.06
Field pH	pH units	s 7.02	7.17	7.40	7.25	7.15	7.22	7.23	7.31	7.23	7.32	7.29	7.60	7.75	7.43	7.22	7.23	7.17	7.13	7.3	7.02	6.97	7.05	6.99
Sulfate	mg/L	82.8	127	62.6	89.5	99.6	110	123	59.4	53.5	100	81.9	85.7	109	114	95.5	97.5	87.3	84.7	76.1	96.7	96.5	130	102
Total Dissolved Solids	mg/L	506	590	476	518	582	556	576	666	498	530	466	486	490	516	510	466	452	452	436	460	504	526	500
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.151	0.14	0.168	0.128	0.131	0.177	0.123	0.158															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00509	0.0054	0.00493	0.00443	0.00481	0.00466	0.00642	0.00483															
Radium-226	pCi/L	0.45 ± 0.107	0.451 ± 0.124	0.362 ± 0.104	0.471 ± 0.0996	0.36 ± 0.0976	< 0.481 U ± 0.277	0.327 ± 0.112	0.185 ± 0.0900)														
Radium-228	pCi/L	2.78 ± 0.489	1.59 ± 0.370	1.86 ± 0.360	2.62 ± 0.468	2.05 ± 0.452	1.39 ± 0.384	1.93 ± 0.397	1.9 ± 0.388															
Radium-226 + Radium-2	28 pCi/L	3.23 ± 0.501	2.041 ± 0.390	2.23 ± 0.375	3.09 ± 0.478	2.41 ± 0.462	1.56 ± 0.474	2.25 ± 0.413	2.08 ± 0.399															
Selenium, Total	mg/L	0.0259	0.0137	0.0181	0.0132	0.0198	0.0119	0.0104	0.013															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend:

--- Not analyzed

mg/L: milligrams per liter

pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 5: Data Summary Table - AP4-MW5

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgrou	nd Collection										Detecti	on Monito	ring ¹						
Appendix III																								
Boron, Total	mg/L	0.0934	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.133	< 0.100	< 0.100	< 0.400	< 0.100	0.109	0.125	< 0.100	0.109
Calcium, Total	mg/L	358	520	439	460	523	517	608	310	488	537	146	541	504	363	579	210	177	600	178	471	468	500	244
Chloride	mg/L	8.98	8.99	5.77	6.97	7.98	10	5.69	6.76	< 5.00	6.59	< 5.00	5.1	5.43	6.03	6.19	5.56	< 5.00	5.71	< 5.00	6.28	6.11	6.52	6.31
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27	0.658	0.601	< 0.500	0.664	0.61	< 0.500	< 0.500	0.53	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.75	7.05	7.08	6.89	6.81	6.82	6.90	6.90	6.82	6.97	7.27	7.23	7.26	7.06	6.82	6.94	7.04	6.67	7.1	6.63	6.64	6.62	6.88
Sulfate	mg/L	1420	1480	969	1410	1620	1570	1350	740	784	1630	468	1470	1370	1540	1580	678	592	1670	426	1590	1550	1680	719
Total Dissolved Solids	mg/L	2540	2740	1950	2620	2860	2920	3010	1490	1710	2690	1020	2390	2210	2500	2740 H	1180	980	2450	750	2350	2660	2510	1270
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.017	0.00903	0.0117	0.00926	0.00843	0.00795	0.00756	0.0124															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005											-				
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0948	0.1330	0.1210	0.1280	0.1480	0.1680	0.1660	0.1080															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00444	0.00329	0.0035	0.00274	0.00263	0.00284	0.00373	0.00344															
Radium-226	pCi/L	0.167 ± 0.0816	0.156 ± 0.103	0.267 ± 0.084	0.176 ± 0.0734	0.217 ± 0.0891	< 0.397 U ± 0.253	0.105 ± 0.068	< 0.109 U ± 0.058															
Radium-228	pCi/L	2.08 ± 0.432	< 0.471 U ± 0.297	2 ± 0.392	1.02 ± 0.317	1.36 ± 0.373	0.972 ± 0.383	0.934 ± 0.294	< 0.361 U ± 0.234															
Radium-226 + Radium-228	pCi/L	2.247 ± 0.44	0.505 ± 0.314	2.27 ± 0.40	1.19 ± 0.325	1.57 ± 0.384	1.21 ± 0.459	1.04 ± 0.302	< 0.361 U ± 0.241											-				
Selenium, Total	mg/L	0.0563	< 0.00500	0.0286	0.0236	0.00561	< 0.00500	< 0.00500	0.0562															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

H: Sample was prepped or analyzed beyond the specified holding time.

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 6: Data Summary Table - AP4-MW6

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Background	Collection			1							Detecti	on Monito	ring ¹						
Appendix III																								
Boron, Total	mg/L	0.0862	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	103	105	101	104	106	101	118	94.1	106	106	92.7	90.6	101	99.2	99.5	105	99.9	99	116	97.2	112	99.6	102
Chloride	mg/L	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	5.28	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	0.87	0.85	1.37	1.61	1.21	1.45	1.35	1.62	1.62	2.19	1.31	1.5	1.46	2.08	1.82	1.53	1.20	1.35	102	1.45	1.28	1.44	1.54
Field pH	pH units	6.92	7.21	7.46	7.19	7.11	7.21	7.35	7.33	7.16	7.40	7.32	7.63	7.22	7.49	7.20	7.16	7.17	7.15	7.20	7.04	6.91	7.07	6.97
Sulfate	mg/L	58.5	96.6	51.3	50.7	70.6	69.1	59.3	53.4	50	60.5	46.7	57.7	65.2	75.5	51.8	58.4	61.8	53.8	52.3	59.8	65.9	66.3	53
Total Dissolved Solids	mg/L	468	506	506	436	514	530	584	550	498	432	396	440	458	422	454	414	414	402	382	394	428	438	428
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.0725	0.0611	0.0622	0.0589	0.0605	0.0629	0.0672	0.0568															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	0.869	0.845	1.37	1.61	1.21	1.45	1.35	1.62															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002			-												
Molybdenum, Total	mg/L	0.00329	0.0039	0.00393	0.00344	0.00281	0.00397	0.00455	0.00411															
Radium-226	pCi/L	0.287 ± 0.0872	0.232 ± 0.0917	0.227 ± 0.0771	0.261 ± 0.073	0.361 ± 0.113	0.545 ± 0.358	0.163 ± 0.0907	0.17 ± 0.0861															
Radium-228	pCi/L	0.983 ± 0.307	0.766 ± 0.31	0.672 ± 0.243	0.699 ± 0.279	1.27 ± 0.439	0.735 ± 0.378	0.451 ± 0.245	0.752 ± 0.244															
Radium-226 + Radium-228	pCi/L	1.27 ± 0.319	0.998 ± 0.323	0.899 ± 0.254	0.961 ± 0.288	1.63 ± 0.454	1.28 ± 0.521	0.614 ± 0.261	0.921 ± 0.259															
Selenium, Total	mg/L	0.0103	0.00883	0.0109	0.00974	0.00984	0.0098	0.0112	0.0104															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed mg/L: milligrams per liter

pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 7: Data Summary Table - AP4-MW7

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units			11	Backgroun	nd Collection		1	I		I	I	I	I		Detec	tion Monif	toring ¹	<u> </u>					I
Appendix III																								
Boron, Total	mg/L	0.0758	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	67.7	68.7	72	66.2	69.4	66.9	79	67.6	67.5	64.3	65.5	66.4	69.4	66.6	66.3	71.7	70.5	68.2	78.2	64.8	75.7	65.9	68.5
Chloride	mg/L	16.1	11.8	11.4	11.2	13	11.7	10.6	12.9	13.3	12.5	12.1	12.9	11.3	11.8	9.89	11.4	9.65	11.4	13.3	13.9	16.8	16.0	14.7
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02	< 0.500	0.52	< 0.500	< 0.500	0.589	< 0.500	0.513	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
Field pH	pH units	7.20	7.45	7.65	7.39	7.40	7.48	7.57	7.52	7.46	7.56	7.54	7.94	7.15	7.70	7.39	7.34	7.37	7.36	7.30	7.23	7.11	7.26	7.17
Sulfate	mg/L	46	39.8	40.4	43.3	40.7	45.6	36.8	35.2	42.7	41.6	34.5	44.2	51.1	49.9	40.6	47.7	50.5	47	40.8	42.1	40.1	34.6	29.6
Total Dissolved Solids	mg/L	546	548	516	558	588	616	534	538	598	476	480	536	504	510	404	488	488	490	490	478	516	466	438
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.165	0.161	0.154	0.137	0.146	0.159	0.177	0.159															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001													-		
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005													-		
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005													-		
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05													-		
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002													-		
Molybdenum, Total	mg/L	0.00841	0.00827	0.00823	0.0069	0.00785	0.00788	0.00955	0.00768															
Radium-226	pCi/L	0.189 ± 0.0807	0.206 ± 0.865	0.277 ± 0.0928	0.25 ± 0.0781	0.29 ± 0.0907	< 0.404 U ± 0.271	0.357 ± 0.112	0.227 ± 0.092															
Radium-228	pCi/L	1.2 ± 0.313	1.92 ± 0.396	1.58 ± 0.322	1.52 ± 0.342	1.60 ± 0.415	2.52 ± 0.481	1.91 ± 0.372	1.67 ± 0.358															
Radium-226 + Radium-228	pCi/L	1.389 ± 0.323	2.126 ± 0.405	1.86 ± 0.335	1.77 ± 0.350	1.89 ± 0.425	2.83 ± 0.552	2.27 ± 0.389	1.89 ± 0.369															
Selenium, Total	mg/L	0.00812	0.00846	0.00898	0.00834	0.00926	0.00764	0.00995	0.0103															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter

pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

Table 8: Sheldon Station Ash Landfill No. 4 Groundwater Levels (ft amsl)

Sample Pariod	Upgradie	ent Wells			Downgradient Wells	\$	
Sample Ferrou	AP4-MW1	AP4-MW2	AP4-MW3	AP4-MW4	AP4-MW5	AP4-MW6	AP4-MW7
MP Elev.	1425.95	1445.03	1411.72	1396.10	1403.10	1386.61	1424.29
QTR-2002-4	1410.90	1422.78	1392.14	1375.99	1385.78	1374.15	1401.53
QTR-2003-1	1409.36	1421.35	1390.20	1374.01	1383.07	1374.06	1399.28
QTR-2003-2	1412.99	1421.11	1396.11	1376.52	1387.68	1376.90	1398.78
QTR-2003-3	1411.22	1421.87	1390.91	1372.66	1382.35	1369.46	1401.34
QTR-2003-4	1410.02	1422.24	1390.31	1373.48	1382.30	1369.10	1401.38
QTR-2004-1	1411.81	1420.78	1393.01	1377.92	1384.12	1377.59	1398.98
QTR-2004-2	1412.04	1420.72	1394.77	1375.64	1383.75	1374.83	1400.70
QTR-2004-3	1411.24	1421.22	1393.89	1375.55	1384.18	1373.85	1408.14
QTR-2004-4	1409.40	1421.39	1391.65	1373.40	1381.88	1374.65	1407.23
QTR-2005-1	1409.32	1420.12	1390.66	1372.78	1381.29	1374.62	1401.20
QTR-2005-2	1410.36	1419.77	1388.86	1372.63	1381.27	1374.55	1399.82
QTR-2005-3		-					
QTR-2005-4	1407.83	1419.58	1387.67	1372.52	1380.80	1369.44	1399.32
OTB-2006-1	1406.35	1418.91	1387.02	1372 42	1380 15	1371 76	1397.99
QTR-2006-2	1408.37	1418 43	1387 52	1372.42	1383.05	1372.36	1397 48
QTR-2006-3	1403.26	1417 13	1386.38	1372.30	1379.83	1370.22	1399.99
OTR-2006-4	1404 91	1419 42	1386 32	1372.25	1380 51	1369 90	1300 80
OTB 2007 4	1407.04	1117.42	1200.02	1072.20	1202.01	1003.30	1000.00
	1407.21	1417.13	1390.03	1072.09	1302.00	13/4.0/	1397.74
	1409.61	1417.42	1391.60	13/3.85	1382.19	13/0.84	1409.74
	1415.33	1417.33	1406.98	1385.69	1395.04	13/9.15	1414.16
QTR-2008-3	1412.64	1418.64	1393.61	1376.05	1385.14	13/3.43	1413.10
QTR-2009-2	1409.86	1417.98	1390.72	13/4.15	1381.58	13/4.49	1403.78
QTR-2009-3	1408.87	1417.88	1389.01	13/2.4/	1380.60	13/0.31	1407.03
QTR-2010-2	1413.98	1418.11	1405.12	1381.85	1390.80	1375.51	1414.59
QTR-2010-3	1411.22	1419.23	1392.72	13/4.81	1383.50	1374.39	1413.39
QTR-2011-2	1409.32	1418.12	1389.92	1374.80	1382.48	1374.55	1403.83
QTR-2011-3	1411.24	1418.58	1391.87	1373.60	1382.88	1373.56	1411.18
QTR-2012-2	1412.85	1418.13	1399.77	1377.74	1388.74	1375.41	1413.29
QTR-2012-3	1408.70	1418.58	1390.03	1372.72	1381.35	1369.47	1410.77
QTR-2013-2	1411.47	1416.93	1391.01	1375.34	1388.23	1375.31	1402.57
QTR-2013-4	1410.46	1417.32	1391.21	1373.05	1382.79	1370.11	1407.27
QTR-2014-2	1407.80	1416.98	1387.42	1372.03	1383.19	1374.23	1400.05
QTR-2014-4	1407.74	1417.08	1387.30	1372.10	1381.27	1371.75	1404.99
QTR-2015-2	1412.00	1415.13	1405.17	1379.63	1394.50	1375.75	1409.78
QTR-2015-3	1412.05	1418.38	1393.87	1376.77	1386.49	1371.86	1412.67
QTR-2015-4	1410.50	1418.89	1391.46	1374.49	1383.76	1372.41	1408.79
QTR-2016-1	1412.60	1420.38	1394.97	1377.65	1387.59	1374.66	1405.38
QTR-2016-2	1414.94	1418.83	1406.92	1384.72	1395.85	1376.79	1410.62
QTR-2016-3	1412.06	1419.51	1393.22	1375.65	1386.20	1373.11	1414.29
QTR-2016-4	1410.10	1419.93	1390.81	1373.60	1382.98	1372.41	1408.39
QTR-2017-1	1408.24	1419.54	1389.29	1372.83	1381.40	1373.83	1403.49
QTR-2017-2	1410.15	1419.00	1389.52	1373.35	1386.96	1373.96	1402.41
QTR-2017-3	1410.40	1419.35	1392.04	1372.70	1383.00	1372.12	1409.31
QTR-2018-1	1408.01	1418.76	1389.65	1372.37	1381.38	1374.21	1402.92
QTR-2018-3	1410.46	1417.88	1397.84	1375.90	1389.87	1374.85	1410.27
QTR-2019-1	1413.80	1418.53	1400.72	1383.19	1391.10	1377.89	1411.27
QTR-2019-3	1412.07	1422.34	1399.14	1377.58	1390.40	1374.46	1415.12
QTR-2020-1	1414.38	1424.75	1399.62	1378.73	1390.27	1374.60	1411.49
QTR-2020-2	1414.67	1427.03	1403.73	1380.90	1394.55	1375.70	1415.83
QTR-2020-3	1411.10	1428.23	1394.10	1375.29	1387.19	1373.30	1414.78
QTR-2021-1	1410.62	1425.54	1390.69	1375.14	1386.42	1374.19	1405.72
QTR-2021-3	1410.46	1426.36	1392.03	1373.93	1384.00	1371.92	1412.38
QTR-2022-1	1408.46	1424.04	1389.13	1372.69	1381.70	1373.66	1404.24
QTR-2022-3	1408.65	1421.92	1390.69	1371.45	1379.75	1370.26	1408.57
QTR-2023-1	1405.85	1419.93	1386.32	1370.00	1378.27	1369.80	1400.39
QTR-2023-3	1405.35	1418.68	1386.93	1370.75	1379.99	1370.86	1398.38
QTR-2024-1	1405.43	1418.98	1387.26	1372.18	1379.84	1370.80	1397.63
QTR-2024-3	1405.25	1417.86	1385.97	1371.45	1379.25	1369.31	1398.27
Mean	1410.09	1419.86	1392.59	1374.89	1384.51	1373.29	1405.84
SD	2.67	2.67	5.35	3.36	4.31	2.39	5.75
Maximum	1415.33	1428.23	1406.98	1385.69	1395.85	1379.15	1415.83
Minimum	1403.26	1415.13	1385.97	1370.00	1378.27	1369.10	1397.48
Range	12.07	13.10	21.01	15.69	17.58	10.05	18.35
	Hydraulic	Gradient	0.028	I			

MP = Measuring Point

MSL = Mean Sea Level (measured to nearest 0.01')

Table 9: Comparative Statistics - AP4-MW1 (Upgradient)

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024			9/3/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	115.1	79.5	93.2	Yes	92.8	93.2	Yes
Chloride	mg/L	NP-PL	11.00	7.57		Yes	7.54		Yes
Fluoride	mg/L	CUSUM	1.95	< 1.00	0.73	Yes	< 1.00	0.73	Yes
pH, Field	pH units	CUSUM	6.49, 8.00	7.10	7.11, 7.25	Yes	7.00	7.05, 7.25	Yes
Sulfate	mg/L	CUSUM	31.6	23.8	23.6	Yes	22.3	23.6	Yes
Total Dissolved Solids	mg/L	CUSUM	584	402	434	Yes	430	434	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 10: Comparative Statistics - AP4-MW2 (Upgradient)

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	4		9/3/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	402	290	297	Yes	306	297	Yes
Chloride	mg/L	NP-PL	113	99.9		Yes	99.8		Yes
Fluoride	mg/L	NP-PL	0.94	< 1.00		Yes - See Text	< 1.00	-	Yes - See Text
pH, Field	pH units	CUSUM	6.55, 7.85	6.97	6.91, 7.20	Yes	6.97	6.84, 7.20	Yes
Sulfate	mg/L	CUSUM	1027	873	856	Yes - Prior Result was a False-Positive	944	901	Yes
Total Dissolved Solids	mg/L	NP-PL	2360	1610		Yes	1630		Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

Table 11: Comparative Statistics - AP4-MW3

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024			9/3/202	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	105.2	78.1	86.5	Yes	84.9	86.5	Yes
Chloride	mg/L	NP-PL	12.40	< 5.00		Yes	< 5.00		Yes
Fluoride	mg/L	CUSUM	2.48	1.27	1.09	Yes	1.21	1.09	Yes
pH, Field	pH units	CUSUM	6.81, 7.99	7.16	6.98, 7.40	Yes	7.08	6.81, 7.40	No - Potential Exceedance
Sulfate	mg/L	CUSUM	48.2	20.0	28.3	Yes	19.1	28.3	Yes
Total Dissolved Solids	mg/L	CUSUM	567	360	435	Yes	340	435	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 12: Comparative Statistics - AP4-MW4

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?	
Appendix III Analytes	Unit				2/26/2024		9/3/2024			
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes	
Calcium, Total	mg/L	CUSUM	153	108	109	Yes	117	109	Yes	
Chloride	mg/L	NP-PL	8.99	< 5.00		Yes	< 5.00		Yes	
Fluoride	mg/L	CUSUM	1.67	1.09	0.97	Yes	1.06	0.97	Yes	
pH, Field	pH units	CUSUM	6.73, 7.79	7.05	6.83, 7.26	Yes	6.99	6.68, 7.26	No - Potential	
		C030M							Exceedance	
Sulfate	mg/L	CUSUM	180	130	108	Yes	102	95	Yes	
Total Dissolved Solids	mg/L	CUSUM	746	526	523	Yes	500	523	Yes	

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 13: Comparative Statistics - AP4-MW5

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?	
Appendix III Analytes	Unit				2/26/2024	4		9/3/2024		
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	0.109		Yes	
Calcium, Total	mg/L	CUSUM	798	500	450	Yes	244	450	Yes	
Chloride	mg/L	CUSUM	15.58	6.52	6.37	Yes	6.31	6.37	Yes	
Fluoride	mg/L	NP-PL	0.664	< 1.00		Yes - See Text	< 1.00		Yes - See Text	
pH, Field	pH units	CUSUM	6.32, 7.63	6.62	6.43, 6.98	Yes	6.88	6.49, 6.98	Yes	
Sulfate	mg/L	NP-PL	1630	1680		No - Potential Exceedance	719		Yes - Prior Result was a False Positive	
Total Dissolved Solids	mg/L	CUSUM	4040	2510	2308	Yes	1270	2308	Yes	

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

Table 14: Comparative Statistics - AP4-MW6

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?		
Appendix III Analytes	Unit				2/26/2024	4		9/3/2024			
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes		
Calcium, Total	mg/L	CUSUM	127	99.6	101.9	Yes	102	102	Yes		
Chloride	mg/L	NP-PL	5.28	< 5.00		Yes	< 5.00		Yes		
Fluoride	mg/L	CUSUM	2.90	1.44	1.47	Yes	1.54	1.47	Yes		
pH, Field	pH units	CUSUM	6.72, 7.82	7.07	6.69, 7.27	No - Potential Exceedance	6.97	3.73, 7.27	Yes - Prior Result was a False-Positive		
Sulfate	mg/L	CUSUM	114.9	66.3	60.5	Yes	53	60.5	Yes		
Total Dissolved Solids	mg/L	CUSUM	687	438	472	Yes	428	472	Yes		

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 15: Comparative Statistics - AP4-MW7

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?		
Appendix III Analytes	Unit				2/26/2024			9/3/2024			
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes		
Calcium, Total	mg/L	NP-PL	79.0	65.9		Yes	68.5		Yes		
Chloride	mg/L	CUSUM	17.9	16.0	18.3	No - Potential Exceedance	14.7	17.0	Yes - Prior Result was a False Positive		
Fluoride	mg/L	NP-PL	1.02	< 1.00		Yes	< 1.00		Yes		
pH, Field	pH units	CUSUM	6.87, 8.09	7.26	6.91, 7.48	Yes	7.17	6.82, 7.17	No - Potential Exceedance		
Sulfate	mg/L	CUSUM	63.2	34.6	43.0	Yes	29.6	43.0	Yes		
Total Dissolved Solids	mg/L	CUSUM	732	466	525	Yes	438	525	Yes		

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Figures

MONITORING WELL GROUNDWATER ELEVATION (ft AMSL)

1'' = 150' FEET

FIGURE 1 ASH LANDFILL NO. 4 GROUNDWATER CONTOURS FEBRUARY 2024

MONITORING WELL GROUNDWATER ELEVATION (ft AMSL)

FIGURE 2 ASH LANDFILL NO. 4 GROUNDWATER CONTOURS SEPTEMBER 2024

FIGURE 2 Sheldon Station Ash Landfill No. 4 Groundwater Elevations

wsp

APPENDIX A

Q1 2024 Semi-annual Report

REPORT

Q1 2024 Semi-Annual Groundwater Report

Nebraska Public Power District - Sheldon Station

Submitted to:

Nebraska Public Power District

Compliance Sector Supervisor, Land Management Division P.O. Box 98922, Lincoln, Nebraska, USA 68509-8922

Submitted by:

Nebraska Public Power District

Sheldon Station, 4500 West Pella Road, Hallam, Nebraska 68368

Prepared by:

WSP USA Inc.

7245 W Alaska Drive, Suite 200, Lakewood, Colorado, USA 80226

+1 303 980 0540

202404161-RPT-0

April 2024

Table of Contents

1.0	INTR	DDUCTION	.1
	1.1	Facility Information	.1
	1.2	Purpose	.1
2.0	GRO	JNDWATER MONITORING NETWORK PROGRAM STATUS	.1
	2.1	Completed Key Actions in First Quarter 2024	.1
	2.2	Installation and Decommissioning of Monitoring Wells	.1
	2.3	Problems and Resolutions	.1
	2.4	Proposed Key Activities for 2024	.2
3.0	GRO	JNDWATER MONITORING ANALYTICAL PROGRAM STATUS	.2
	3.1	Samples Collected	.2
	3.1.1	Groundwater Elevation and Flow Rate	.3
	3.2	Monitoring Data (Analytical Results)	.3
	3.3	Comparative Statistical Analysis	.3
	3.3.1	Definitions	.3
	3.3.2	Potential Exceedances	.4
	3.3.3	False-Positives	.4
	3.3.4	Verified Exceedances	.4
	3.4	Program Transitions	.4
	3.4.1	Detection Monitoring	.4
	3.4.2	Alternative Source Demonstrations	.4
	3.4.3	Assessment Monitoring	.4
	3.4.4	Corrective Measures and Assessment	.5
4.0	RECO	OMMENDATIONS AND CLOSING	.5
5.0	REFE	RENCES	.6

TABLES

Table 1: Data Summary Table – AP4-MW1 (U) Table 2: Data Summary Table – AP4-MW2 (U) Table 3: Data Summary Table – AP4-MW3 Table 4: Data Summary Table – AP4-MW4 Table 5: Data Summary Table – AP4-MW5 Table 6: Data Summary Table – AP4-MW6 Table 7: Data Summary Table – AP4-MW7 Table 8: Sheldon Station Ash Landfill No. 4 Groundwater Levels Table 9: Comparative Statistics – AP4-MW1 (U) Table 10: Comparative Statistics – AP4-MW2 (U) Table 11: Comparative Statistics – AP4-MW3 Table 12: Comparative Statistics – AP4-MW4 Table 13: Comparative Statistics – AP4-MW5 Table 14: Comparative Statistics – AP4-MW6 Table 15: Comparative Statistics – AP4-MW7

FIGURES

Figure 1: Ash Landfill No. 4, Groundwater Contours, February 2024 Figure 2: Ash Landfill No. 4 Groundwater Elevations

APPENDICES

Appendix A – Analytical Report and Chain-of-Custody Documentation Appendix B – Field Notes Appendix C – Time Series Data Appendix D – Comparative Statistical Analysis
1.0 INTRODUCTION

WSP USA Inc. (WSP) prepared this report describing the first 2024 semi-annual groundwater sampling event and comparative statistical analysis for Nebraska Public Power District's (NPPD) Sheldon Station Ash Landfill No. 4 (AP4) in Hallam, Nebraska. This report was written to meet the requirements of the site's permitted Sampling and Analysis Plan (SAP; GAUSA 2022a), as approved by the Nebraska Department of Environment and Energy (NDEE) and the federal Coal Combustion Residuals (CCR) Rule's sections on groundwater monitoring and corrective action, 40 Code of Federal Regulations (CFR) 257.90-98 and applicable revisions to the Rule.

1.1 Facility Information

Sheldon Station is owned and operated by NPPD and can generate 225 megawatts (MW) of power. The facility is located in southeastern Nebraska in Section 19, T7N, R6E, and is 18 miles south of Lincoln in Lancaster County. The village of Hallam is the closest community to the site and is 1.5 miles south of the facility. NPPD constructed Sheldon Station in 1958, switching the facility entirely to low-sulfur coal from Wyoming's Powder River Basin in 1974. The active CCR landfill at the site (AP4) contains fly ash and bottom ash.

1.2 Purpose

The United States Environmental Protection Agency's (USEPA) CCR Rule established specific requirements for reporting of groundwater monitoring and corrective action at CCR facilities in 40 CFR 257.90 to 40 CFR 257.98 (USEPA 2015). The permitted SAP for AP4 was developed to comply with both the federal CCR regulations and NDEE requirements (GAUSA 2022a). Under the NDEE reporting requirements, reports are prepared on a semi-annual basis, following each sampling event.

2.0 GROUNDWATER MONITORING NETWORK PROGRAM STATUS

The groundwater monitoring network for the active CCR landfill at Sheldon Station consists of seven monitoring wells as shown in Figure 1. The two upgradient monitoring wells are AP4-MW1 and AP4-MW2, which are marked by (U) throughout the text. The five downgradient monitoring wells are AP4-MW3, AP4-MW4, AP4-MW5, AP4-MW6, and AP4-MW7.

2.1 Completed Key Actions in First Quarter 2024

A detection monitoring sampling event was completed during the first quarter of 2024.

2.2 Installation and Decommissioning of Monitoring Wells

No monitoring wells were installed or decommissioned at Sheldon Station during the first quarter of 2024.

2.3 **Problems and Resolutions**

During the first quarter 2024 monitoring event, analysis by Method 9056A required dilution due to the sample matrix, resulting in non-detects with elevated reporting limits for several well-parameter pairs. Results are consistent with past results and required dilutions. The following well-parameter pairs were reported as non-detects with elevated reporting limits:

- Chloride, 5x dilution factor, elevated reporting limit equals 5.0 milligrams per liter (mg/L): AP4-MW3, AP4-MW4, AP4-MW6
- Fluoride, 5x dilution factor, elevated reporting limit equals 1.00 mg/L: AP4-MW2, AP4-MW5, and AP4-MW7

Upon review of the analytical report in first quarter (Q1) 2024, a difference was noted in the provided reporting limit for fluoride across the collected samples when compared to past results, but consistent with the reporting limits provided for the previous sampling event (third quarter [Q3] 2023). Eurofins Environment Testing Ceder Falls (Eurofins), as the contracted analytical laboratory, was contacted for additional information. Eurofins noted that during a recent re-evaluation and certification of the minimum detectable levels (MDLs) for the laboratory instrument using method SW9056A for fluoride, the undiluted MDL for fluoride increased from 0.044 mg/L to 0.075 mg/L. The change in MDL resulted in a concurrent increase in the undiluted reporting limit, given as the practical quantitation limit (PQL), from 0.10 mg/L to 0.20 mg/L. Samples were analyzed using a similar dilution factor to prior results, resulting in non-detects reported as non-detect (ND) <1.0 mg/L for the samples. This result is not considered a statistical increase based on the difference in results stemming from changes to the laboratory reporting limits. However, efforts will be taken with the laboratory to review the necessity of the applied dilution factor in future samples.

During evaluation of the analytical report, a number of issues were identified and requested for review by the analytical laboratory. Eurofins reviewed and revised the report to address the following issues:

- The samples collected from AP4-MW2 was re-analyzed for Fluoride at a 5x dilution. The sample was initially reported at a 10x dilution. The result of the re-analysis was more consistent with past results.
- In the original analytical report, AP4-MW3 was found to have a data entry error where the results for Chloride and Fluoride had been switched within the report. Both parameters are analyzed by Method 9056A.
- The samples for AP4-MW4 and AP4-MW5 were re-analyzed to confirm the original reported results for sulfate. The lab found the original results to be acceptable.

Only the final revised analytical report has been included in Appendix A.

On the field notes, the date for collection of the samples at AP4-MW4 were noted as collected on February 27, while the chain-of-custody included with the analytical report indicates sample collection occurred on February 26. The date listed on the chain-of-custody is considered correct. No other problems were encountered as part of the field sampling in Q1 of 2024.

2.4 Proposed Key Activities for 2024

A detection monitoring sampling event is scheduled to occur in Q3 of 2024 and will consist of sampling, data review, and comparative statistics. Following the detection monitoring sampling event, the second semi-annual report for 2024 will be provided to the NDEE.

3.0 GROUNDWATER MONITORING ANALYTICAL PROGRAM STATUS

Analytical activities associated with the groundwater monitoring program are described below.

3.1 Samples Collected

NPPD staff collected eight initial baseline samples on a quarterly basis between September 15, 2015, and May 16, 2017, at each of the two upgradient and five downgradient monitoring wells. Detection monitoring samples have been collected on a semi-annual basis beginning on September 19, 2017. This report outlines the results of the detection monitoring sampling event that occurred on February 26, 2024. Specific dates for each sample collected as part of the program are provided in Table 1 through Table 7. The analytical report for the February 26, 2024, samples is included as Appendix A and associated field notes are included as Appendix B.

3.1.1 Groundwater Elevation and Flow Rate

Groundwater elevations were measured in each well during each sampling event prior to purging. Elevation measurements can be found in Table 8. Groundwater elevations and interpolated groundwater contours from the February 2024 (Q1 2024) detection monitoring sampling event are shown in Figure 1. Figure 2 shows groundwater elevations over time at the site.

The groundwater flow rate across Ash Pond 4 was estimated with the equation $V_s = k \times i/n_e$, where:

- V_s is the groundwater flow rate, in feet per day (ft/day).
- k is the hydraulic conductivity in ft/day, estimated at 0.005 ft/day from slug testing results from system wells.
- *i* is the hydraulic gradient in feet per feet (ft/ft), calculated based on groundwater elevations during each monitoring event.
- n_e is the effective porosity, a unitless parameter, estimated to be 0.2 for site soils.

The average groundwater flow rate for February 2024 was estimated to be 6.9×10^{-4} ft/day, based on the calculated hydraulic gradient for February 2024 of 0.03 ft/ft.

3.2 Monitoring Data (Analytical Results)

Analytical results for the detection monitoring results for the February 2024 monitoring event are shown in Table 1 through Table 7. Time series of the parameters are included as Appendix C.

3.3 Comparative Statistical Analysis

Comparative statistical analysis was conducted using the previously approved results of the baseline update conducted prior to the Q1 2022 detection monitoring event (GAUSA 2022b) following guidance provided by the USEPA (2009). The results of the comparative statistical analysis are summarized below and presented in Table 9 through Table 15. A full description of the steps taken for the comparative statistical analysis can be found in the Groundwater Monitoring Statistical Methods Certification (GAI 2017a). Charts for the comparative statistical analysis are included as Appendix D.

3.3.1 Definitions

The following definitions are used in discussion of the comparative statistical analysis:

- Statistically Significant Increase (SSI) defined as a result that exceeds the statistical limit established by the baseline statistical analysis, which has been verified by confirmatory re-sampling and analysis.
- Elevated Cumulative Sum (CUSUM) occurs when the calculated CUSUM value is greater than the Shewhart-CUSUM limit established by the baseline statistical analysis, but the analytical result does not exceed the Shewhart-CUSUM limit. An elevated CUSUM is an indication that concentrations are gradually increasing and that analytical results may exceed the Shewhart-CUSUM limit in the future.
- Potential Exceedance defined as an initial elevated CUSUM or an analytical result that exceeds the Shewhart-CUSUM limit or non-parametric prediction limit established by the baseline statistical analysis. Confirmatory re-sampling will determine if a potential exceedance is a false-positive or a verified SSI. Nondetect results that exceed either the Shewhart-CUSUM limit or the non-parametric prediction limit are not considered potential exceedances.

- False-positive defined as an analytical result or elevated CUSUM that exceeded the associated statistical limit, but can be clearly attributed to laboratory error, changes in analytical precision, or is invalidated through confirmatory re-sampling. False-positives are not used in calculation of any subsequent CUSUM values.
- Confirmatory re-sampling designated as the next sampling event.
- Verified exceedances (verified SSIs) interpreted as two consecutive samples exceeding the statistical limit (the original sample and the confirmatory re-sample, or two, consecutive elevated CUSUMs) for the same parameter at the same well.

3.3.2 Potential Exceedances

The following potential exceedances were identified for the Q1 2024 sampling event:

- AP4-MW5, Sulfate
- AP4-MW7, Chloride Elevated CUSUM

Confirmatory re-samples will be collected to determine whether the results are false-positives or verified SSIs.

3.3.3 False-Positives

No false-positives were identified for the Q1 2024 detection monitoring sampling event.

3.3.4 Verified Exceedances

No verified SSIs were identified for the Q1 2024 detection monitoring sampling event.

3.4 **Program Transitions**

Beginning in Q3 2017, the groundwater monitoring program at Sheldon Station transitioned from the initial baseline period to detection monitoring. During the initial baseline period, eight independent samples from each well within the program were collected and analyzed for the constituents listed in Appendix III and Appendix IV of the federal CCR Rule prior to October 17, 2017, as specified in 40 CFR 257.94(b).

3.4.1 Detection Monitoring

Samples for the detection monitoring program are collected on a semi-annual basis, beginning with the sample collected in September 2017. NPPD plans to continue to collect semi-annual samples under the detection monitoring program in the third quarter of 2024.

3.4.2 Alternative Source Demonstrations

Resulting from the verified SSI for sulfate at AP4-MW1 (U) verified during the Q1 2022 detection monitoring event, NPPD and Golder pursued an alternative source demonstration (ASD; GAUSA 2022C). As an upgradient background location, groundwater from AP4-MW1 flows north towards the landfill, as shown in Figure 1. As such, AP4 is not considered the source of the verified SSI at AP4-MW1. A review of relevant site conditions and associated information was completed within 90 days of identification of the verified SSI and presented as an ASD. Following completion of the successful ASD and concurrence of the NDEE (NDEE 2022), Sheldon Station's AP4 remains in detection monitoring.

3.4.3 Assessment Monitoring

The current groundwater monitoring program at Sheldon Station is not in assessment monitoring. Assessment monitoring has not been triggered as described in the permitted SAP (GAUSA 2022a).

3.4.4 Corrective Measures and Assessment

The current groundwater monitoring program at Sheldon Station does not indicate the need for corrective measures. An assessment of corrective measures has not been required. No alternative source demonstration stemming from statistically significant levels of Appendix IV parameters identified as part of an assessment monitoring program has been made. No actions are required at this time.

4.0 RECOMMENDATIONS AND CLOSING

This report presents the results from the detection monitoring sampling event that occurred February 26, 2024, along with the associated comparative statistical analysis.

As described in the Groundwater Monitoring System Certification (GAI 2017b) and the Groundwater Monitoring Statistical Methods Certification (GAI 2017a), the groundwater monitoring and analytical procedures meet the general requirements of the CCR Rule and the permitted SAP (GAUSA 2022a), and modifications to the monitoring network and sampling program are not recommended at this time.

WSP USA Inc.

Buttay 12

Brittany Bradley Associate Consultant

Jacob J. Sauer, PE Senior Lead Consultant and Assistant Vice President

https://wsponline.sharepoint.com/sites/global-nppd2023gwqualityrep/project files/6 deliverables/010-rpt-q1_2024_semi_gw_rpt/rev0/31405886.001-010-rpt-0_q1_2024_semi_gw_rpt_26apr24.docx

BCB/ELH/JJS

In C. Huts

Erin L. Hunter, PhD, PE *Lead Consultant*

5.0 **REFERENCES**

- Golder Associates, Inc. (GAI). 2017a. Groundwater Monitoring Statistical Methods Certification, Sheldon Station Ash Landfill No. 4. October 11, 2017.
- GAI. 2017b. Coal Combustion Residuals Landfill Groundwater Monitoring System Certification. October 11, 2017.
- Golder Associates USA Inc. (GAUSA) 2022a. Sampling and Analysis Plan Permit No. NE0204285, Sheldon Station Ash Landfill No. 4. March 1, 2022.
- GAUSA. 2022b. Baseline Update for Groundwater Quality Monitoring at Nebraska Public Power District's Sheldon Station. April 6, 2022.
- GAUSA. 2022c. Alternate Source Demonstration for Sulfate at Upgradient Location AP4-MW1. July 20, 2022.
- Nebraska Department of Environment and Energy (NDEE). 2022. Response to MW-1 Sulfate Alternate Source Demonstration (ASD). Letter from Wade Gregson (NDEE) to Brian J. Kozisek (NPPD). August 19, 2022.
- United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. Office of Resource Conservation and Recovery. EPA-R-09-007. March 2009.
- USEPA. 2015. Code of Federal Regulations Title 40 Part 257: Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities. April 17, 2015.

Tables

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 1. Data Summary Table - AP4-MW1

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units			1	Background	Collection			1				I		De	etection M	onitoring ¹			I		I	
Appendix III																							
Boron, Total	mg/L	0.0784	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.130	< 0.100
Calcium, Total	mg/L	89.8	90.4	95.1	103	93.0	88.3	103	92.3	91.0	99.6	82.4	94.2	93.7	85.3	94.0	96.2	93.7	92.6	101	85.2	99.4	79.5
Chloride	mg/L	22.5	7.05	5.57	6.43	6.24	11	5.37	7.48	7.47	6.52	5.61	6.15	1.18	6.74	7.27	7.13	7.17	6.81	7.59	7.19	7.33	7.57
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22	1.2	0.846	0.723	1.07	0.194	0.552	0.816	0.856	0.615	0.611	0.524	0.811	< 1.00	< 1.00
Field pH	pH units	6.95	6.94	7.46	7.26	7.19	7.19	7.32	7.19	7.17	7.36	7.23	7.59	7.60	7.37	7.16	6.8	7.14	7.11	7.20	7.04	6.95	7.10
Sulfate	mg/L	22.8	23.7	22.2	22.2	22.8	24.5	20.6	21.7	24.4	23.4	19.6	23.2	4.79	25.7	25.3	25.2	27.2	26.2	22.7	23.2	27.3	23.8
Total Dissolved Solids	mg/L	440	462	428	430	462	464	484	520	464	408	406	416	392	422	396	388	388	396	368	362	400	402
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.23	0.258	0.221	0.199	0.193	0.209	0.269	0.231														
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22														
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Lithium, Total	mg/L	0.0508	0.0513	0.0504	0.0505	0.0506	0.0546	< 0.05	< 0.05														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002														
Molybdenum, Total	mg/L	0.00725	0.00823	0.00724	0.00647	0.00656	0.00655	0.00883	0.00739														
Radium-226	pCi/L	0.257 ± 0.0866	0.293 ± 0.104	0.35 ± 0.097	0.314 ± 0.0878	0.417 ± 0.111	0.527 ± 0.33	0.208 ± 0.0918	0.373 ± 0.125														
Radium-228	pCi/L	2.14 ± 0.411	2.68 ± 0.446	1.49 ± 0.319	1.19 ± 0.318	1.26 ± 0.383	2.09 ± 0.453	2.02 ± 0.392	1.88 ± 0.383														
Radium-226 + Radium-228	pCi/L	2.397 ± 0.42	2.973 ± 0.458	1.84 ± 0.333	1.51 ± 0.33	1.67 ± 0.399	2.62 ± 0.561	2.22 ± 0.403	2.25 ± 0.403														
Selenium, Total	mg/L	0.00901	0.0123	0.0101	0.00873	0.00826	0.00816	0.0114	0.00999														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

1. As indicated by the CCR Rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 2. Data Summary Table - AP4-MW2

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units			1	Background	Collection					1				Detec	tion Monito	oring ¹						
Appendix III																							
Boron, Total	mg/L	0.0831	< 0.500	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.400	< 0.100	< 0.100	0.111	< 0.100
Calcium, Total	mg/L	335	321	294	320	289	286	342	278	293	331	263	297	291	239	292	296	288	295	336	269	309	290
Chloride	mg/L	89.9	93.3	83.6	94.2	92.7	92.5	87	88.6	88.6	94.3	92	87.6	88.8	93.9	106.0	113.0	111	115	99.6	106	111	99.9
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935	0.677	0.687	< 0.500	0.612	0.702	0.715	< 0.500	< 0.500	0.533	< 0.500	< 0.500	0.544	< 1.00	< 1.00
Field pH	pH units	6.98	6.99	7.37	7.2	7.16	7.13	7.25	7.18	7.16	7.26	7.19	7.44	7.60	7.33	7.09	7.05	7.08	7.09	7.1	6.97	6.97	6.97
Sulfate	mg/L	884	888	797	804	901	842	774	797	894	879 E	827	923	855	857	874	876	882	933	906	874	1120	873
Total Dissolved Solids	mg/L	1720	1840	1700	1830	1900	1790	2360	1780	2210	1650	1680	1730	1570	1740	1620	1680	1620	1560	1680	1380	1750	1610
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.0115	0.0117	0.0107	0.0102	0.00996	0.012	0.0138	0.0103														
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935														
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Lithium, Total	mg/L	0.0811	0.0754	0.0699	0.0681	0.0523	0.0705	0.0661	0.0694														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002														
Molybdenum, Total	mg/L	0.00543	0.00555	0.00526	0.00533	0.00519	0.00494	0.00627	0.00491														
Radium-226	pCi/L	0.258 ± 0.0937	0.241 ± 0.0886	0.28 ± 0.0846	0.312 ± 0.0834	0.334 ± 0.097	0.778 ± 0.403	0.25 ± 0.103	0.188 ± 0.0925														
Radium-228	pCi/L	2.02 ± 0.457	2.53 ± 0.497	2.07 ± 0.384	2.2 ± 0.449	2.41 ± 0.467	2.49 ± 0.485	2.01 ± 0.41	2.01 ± 0.405														
Radium-226 + Radium-228	pCi/L	2.278 ± 0.467	2.771 ± 0.505	2.35 ± 0.394	2.51 ± 0.456	2.74 ± 0.477	3.27 ± 0.631	2.26 ± 0.423	2.2 ± 0.415														
Selenium, Total	mg/L	0.714	0.697	0.634	0.706	0.628	0.628	0.779	0.657														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter E: Result exceeded calibration range.

NOTES: 1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 3. Data Summary Table - AP4-MW3

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units				Backgroun	d Collection		1			1				Detect	tion Monito	oring ¹						
Appendix III																							
Boron, Total	mg/L	0.0687	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	82.4	85.9	89.8	88.5	87.5	85	95.8	86.1	83.7	92.3	74.7	88.5	87.8	81.1	84.1	88.4	88.3	84.3	94.5	78.8	88.5	78.1
Chloride	mg/L	12.4	< 5.00	< 5.00	< 5.00	6.94	5.4	< 5.00	5.18	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82	1.2	1.29	1.05	1.29	1.24	1.24	1.34	1.33	0.914	0.972	0.717	1.23	1.14	1.27
Field pH	pH units	7.15	7.21	7.60	7.38	7.30	7.34	7.39	7.40	7.28	7.48	7.43	7.69	7.60	7.56	7.3	6.55	7.36	7.27	7.40	7.14	7.13	7.16
Sulfate	mg/L	33.2	24.4	25.2	34.6	31.2	29	20.6	21.7	33.2	30.7	20	35	32.3	30.3	26.7	22.9	29.2	22.3	21	19.3	17.7	20.0
Total Dissolved Solids	mg/L	418	460	390	420	488	430	428	442	494	404	374	426	378	374	378	348	344	354	326	318	360	360
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.218	0.235	0.225	0.222	0.206	0.232	0.271	0.238														
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82														
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Lithium, Total	mg/L	0.0502	< 0.0500	0.0519	< 0.05	< 0.05	0.0538	0.0520	0.0547														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002														
Molybdenum, Total	mg/L	0.00922	0.0101	0.00992	0.00873	0.00928	0.00978	0.0116	0.00983														
Radium-226	pCi/L	0.401 ± 0.101	0.389 ± 0.106	0.384 ± 0.103	0.501 ± 0.104	0.4 ± 0.102	0.426 ± 0.292	0.318 ± 0.108	0.188 ± 0.0889														
Radium-228	pCi/L	3.69 ± 0.576	2.87 ± 0.491	2.91 ± 0.463	3.42 ± 0.547	2.65 ± 0.477	3.19 ± 0.561	2.35 ± 0.432	2.26 ± 0.422														
Radium-226 + Radium-228	pCi/L	4.091 ± 0.474	3.259 ± 0.502	3.3 ± 0.474	3.92 ± 0.557	3.04 ± 0.487	3.62 ± 0.632	2.67 ± 0.445	2.45 ± 0.431														
Selenium, Total	mg/L	0.0138	0.0164	0.0165	0.0145	0.0152	0.0154	0.0201	0.0191														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 4. Data Summary Table - AP4-MW4

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units				Backgro	und Collection									D	etection M	lonitoring	1	1			1	
Appendix III																							
Boron, Total	mg/L	0.0674	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	128	123	103	115	111	105	132	95.4	108	109	97.1	100	112	91.9	104	112	109	102	119	100	117	108
Chloride	mg/L	13	8.99	< 5.00	6.71	8.55	7.77	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33	1.18	1.2	0.796	1.17	1.12	0.983	1.110	0.989	0.900	0.837	0.626	1.03	< 1.00	1.09
Field pH	pH units	7.02	7.17	7.40	7.25	7.15	7.22	7.23	7.31	7.23	7.32	7.29	7.60	7.75	7.43	7.22	7.23	7.17	7.13	7.3	7.02	6.97	7.05
Sulfate	mg/L	82.8	127	62.6	89.5	99.6	110	123	59.4	53.5	100	81.9	85.7	109	114	95.5	97.5	87.3	84.7	76.1	96.7	96.5	130
Total Dissolved Solids	mg/L	506	590	476	518	582	556	576	666	498	530	466	486	490	516	510	466	452	452	436	460	504	526
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.151	0.14	0.168	0.128	0.131	0.177	0.123	0.158														
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005			-											
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33			-											
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005			-											
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002														
Molybdenum, Total	mg/L	0.00509	0.0054	0.00493	0.00443	0.00481	0.00466	0.00642	0.00483			-											
Radium-226	pCi/L	0.45 ± 0.107	0.451 ± 0.124	0.362 ± 0.104	0.471 ± 0.0996	0.36 ± 0.0976	< 0.481 U ± 0.277	0.327 ± 0.112	0.185 ± 0.0900														
Radium-228	pCi/L	2.78 ± 0.489	1.59 ± 0.370	1.86 ± 0.360	2.62 ± 0.468	2.05 ± 0.452	1.39 ± 0.384	1.93 ± 0.397	1.9 ± 0.388			-											
Radium-226 + Radium-22	pCi/L	3.23 ± 0.501	2.041 ± 0.390	2.23 ± 0.375	3.09 ± 0.478	2.41 ± 0.462	1.56 ± 0.474	2.25 ± 0.413	2.08 ± 0.399														
Selenium, Total	mg/L	0.0259	0.0137	0.0181	0.0132	0.0198	0.0119	0.0104	0.013														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed

mg/L: milligrams per liter pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 5. Data Summary Table - AP4-MW5

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units			1	Backgrou	nd Collection			1						De	tection Mc	onitoring ¹						
Appendix III																							
Boron, Total	mg/L	0.0934	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.133	< 0.100	< 0.100	< 0.400	< 0.100	0.109	0.125	< 0.100
Calcium, Total	mg/L	358	520	439	460	523	517	608	310	488	537	146	541	504	363	579	210	177	600	178	471	468	500
Chloride	mg/L	8.98	8.99	5.77	6.97	7.98	10	5.69	6.76	< 5.00	6.59	< 5.00	5.1	5.43	6.03	6.19	5.56	< 5.00	5.71	< 5.00	6.28	6.11	6.52
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27	0.658	0.601	< 0.500	0.664	0.61	< 0.500	< 0.500	0.53	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
Field pH	pH units	6.75	7.05	7.08	6.89	6.81	6.82	6.90	6.90	6.82	6.97	7.27	7.23	7.26	7.06	6.82	6.94	7.04	6.67	7.1	6.63	6.64	6.62
Sulfate	mg/L	1420	1480	969	1410	1620	1570	1350	740	784	1630	468	1470	1370	1540	1580	678	592	1670	426	1590	1550	1680
Total Dissolved Solids	mg/L	2540	2740	1950	2620	2860	2920	3010	1490	1710	2690	1020	2390	2210	2500	2740 H	1180	980	2450	750	2350	2660	2510
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.017	0.00903	0.0117	0.00926	0.00843	0.00795	0.00756	0.0124														
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27														
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Lithium, Total	mg/L	0.0948	0.1330	0.1210	0.1280	0.1480	0.1680	0.1660	0.1080														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002														
Molybdenum, Total	mg/L	0.00444	0.00329	0.0035	0.00274	0.00263	0.00284	0.00373	0.00344														
Radium-226	pCi/L	0.167 ± 0.0816	0.156 ± 0.103	0.267 ± 0.084	0.176 ± 0.0734	0.217 ± 0.0891	< 0.397 U ± 0.253	0.105 ± 0.068	< 0.109 U ± 0.058														
Radium-228	pCi/L	2.08 ± 0.432	< 0.471 U ± 0.297	2 ± 0.392	1.02 ± 0.317	1.36 ± 0.373	0.972 ± 0.383	0.934 ± 0.294	< 0.361 U ± 0.234														
Radium-226 + Radium-228	pCi/L	2.247 ± 0.44	0.505 ± 0.314	2.27 ± 0.40	1.19 ± 0.325	1.57 ± 0.384	1.21 ± 0.459	1.04 ± 0.302	< 0.361 U ± 0.241														
Selenium, Total	mg/L	0.0563	< 0.00500	0.0286	0.0236	0.00561	< 0.00500	< 0.00500	0.0562														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter U: Result is less than the sample detection limit (varies by sample for radiological results). H: Sample was prepped or analyzed beyond the specified holding time.

NOTES: 1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 6. Data Summary Table - AP4-MW6

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units				Background	Collection									De	etection M	onitoring ¹						
Appendix III																							
Boron, Total	mg/L	0.0862	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	103	105	101	104	106	101	118	94.1	106	106	92.7	90.6	101	99.2	99.5	105	99.9	99	116	97.2	112	99.6
Chloride	mg/L	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	5.28	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	0.87	0.85	1.37	1.61	1.21	1.45	1.35	1.62	1.62	2.19	1.31	1.5	1.46	2.08	1.82	1.53	1.20	1.35	102	1.45	1.28	1.44
Field pH	pH units	6.92	7.21	7.46	7.19	7.11	7.21	7.35	7.33	7.16	7.40	7.32	7.63	7.22	7.49	7.20	7.16	7.17	7.15	7.20	7.04	6.91	7.07
Sulfate	mg/L	58.5	96.6	51.3	50.7	70.6	69.1	59.3	53.4	50	60.5	46.7	57.7	65.2	75.5	51.8	58.4	61.8	53.8	52.3	59.8	65.9	66.3
Total Dissolved Solids	mg/L	468	506	506	436	514	530	584	550	498	432	396	440	458	422	454	414	414	402	382	394	428	438
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1					-								
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-													
Barium, Total	mg/L	0.0725	0.0611	0.0622	0.0589	0.0605	0.0629	0.0672	0.0568	-													
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1					-								
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	-													
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	1					-								
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	0.869	0.845	1.37	1.61	1.21	1.45	1.35	1.62	-													
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05														
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-													
Molybdenum, Total	mg/L	0.00329	0.0039	0.00393	0.00344	0.00281	0.00397	0.00455	0.00411	-					-								
Radium-226	pCi/L	0.287 ± 0.0872	0.232 ± 0.0917	0.227 ± 0.0771	0.261 ± 0.073	0.361 ± 0.113	0.545 ± 0.358	0.163 ± 0.0907	0.17 ± 0.0861														
Radium-228	pCi/L	0.983 ± 0.307	0.766 ± 0.31	0.672 ± 0.243	0.699 ± 0.279	1.27 ± 0.439	0.735 ± 0.378	0.451 ± 0.245	0.752 ± 0.244														
Radium-226 + Radium-228	pCi/L	1.27 ± 0.319	0.998 ± 0.323	0.899 ± 0.254	0.961 ± 0.288	1.63 ± 0.454	1.28 ± 0.521	0.614 ± 0.261	0.921 ± 0.259														
Selenium, Total	mg/L	0.0103	0.00883	0.0109	0.00974	0.00984	0.0098	0.0112	0.0104														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 7. Data Summary Table - AP4-MW7

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024
	Units		1		Background	d Collection	1		1				1	I	D	etection N	Ionitoring	1	1	1			I
Appendix III																							
Boron, Total	mg/L	0.0758	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	67.7	68.7	72	66.2	69.4	66.9	79	67.6	67.5	64.3	65.5	66.4	69.4	66.6	66.3	71.7	70.5	68.2	78.2	64.8	75.7	65.9
Chloride	mg/L	16.1	11.8	11.4	11.2	13	11.7	10.6	12.9	13.3	12.5	12.1	12.9	11.3	11.8	9.89	11.4	9.65	11.4	13.3	13.9	16.8	16.0
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02	< 0.500	0.52	< 0.500	< 0.500	0.589	< 0.500	0.513	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00
Field pH	pH units	7.20	7.45	7.65	7.39	7.40	7.48	7.57	7.52	7.46	7.56	7.54	7.94	7.15	7.70	7.39	7.34	7.37	7.36	7.30	7.23	7.11	7.26
Sulfate	mg/L	46	39.8	40.4	43.3	40.7	45.6	36.8	35.2	42.7	41.6	34.5	44.2	51.1	49.9	40.6	47.7	50.5	47	40.8	42.1	40.1	34.6
Total Dissolved Solids	mg/L	546	548	516	558	588	616	534	538	598	476	480	536	504	510	404	488	488	490	490	478	516	466
Appendix IV																							
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002														
Barium, Total	mg/L	0.165	0.161	0.154	0.137	0.146	0.159	0.177	0.159													-	
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001													-	
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005													-	
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005														
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005														
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02														
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005													-	
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05													-	
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002													-	
Molybdenum, Total	mg/L	0.00841	0.00827	0.00823	0.0069	0.00785	0.00788	0.00955	0.00768													-	
Radium-226	pCi/L	0.189 ± 0.0807	0.206 ± 0.865	0.277 ± 0.0928	0.25 ± 0.0781	0.29 ± 0.0907	< 0.404 U ± 0.271	0.357 ± 0.112	0.227 ± 0.092														
Radium-228	pCi/L	1.2 ± 0.313	1.92 ± 0.396	1.58 ± 0.322	1.52 ± 0.342	1.60 ± 0.415	2.52 ± 0.481	1.91 ± 0.372	1.67 ± 0.358														
Radium-226 + Radium-228	pCi/L	1.389 ± 0.323	2.126 ± 0.405	1.86 ± 0.335	1.77 ± 0.350	1.89 ± 0.425	2.83 ± 0.552	2.27 ± 0.389	1.89 ± 0.369														
Selenium, Total	mg/L	0.00812	0.00846	0.00898	0.00834	0.00926	0.00764	0.00995	0.0103														
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														

Legend: --- Not analyzed

mg/L: milligrams per liter

pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

1. As indicated by the CCR rule (40 CFR 257.94), the Detection Monitoring Program monitors all constituents found in Appendix III.

wsp

MP = Measuring Point MSL = Mean Sea Level (measured to nearest 0.01')

	Upgradie	ent Wells			Downgradient Wells	;	
Sample Period	AP4-MW1	AP4-MW2	AP4-MW3	AP4-MW4	AP4-MW5	AP4-MW6	AP4-MW7
MP Elev.	1425.95	1445.03	1411.72	1396.10	1403.10	1386.61	1424.29
QTR-2002-4	1410.90	1422.78	1392.14	1375.99	1385.78	1374.15	1401.53
QTR-2003-1	1409.36	1421.35	1390.20	1374.01	1383.07	1374.06	1399.28
QTR-2003-2	1412.99	1421.11	1396.11	1376.52	1387.68	1376.90	1398.78
QTR-2003-3	1411.22	1421.87	1390.91	1372.66	1382.35	1369.46	1401.34
QTR-2003-4	1410.02	1422.24	1390.31	1373.48	1382.30	1369.10	1401.38
QTR-2004-1	1411.81	1420.78	1393.01	1377.92	1384.12	1377.59	1398.98
QTR-2004-2	1412.04	1420.72	1394.77	1375.64	1383.75	1374.83	1400.70
QTR-2004-3	1411.24	1421.22	1393.89	1375.55	1384.18	1373.85	1408.14
QTR-2004-4	1409.40	1421.39	1391.65	1373.40	1381.88	1374.65	1407.23
QTR-2005-1	1409.32	1420.12	1390.66	1372.78	1381.29	1374.62	1401.20
QTR-2005-2	1410.36	1419.77	1388.86	1372.63	1381.27	1374.55	1399.82
QTR-2005-3							
QTR-2005-4	1407.83	1419.58	1387.67	1372.52	1380.80	1369.44	1399.32
QTR-2006-1	1406.35	1418.91	1387.02	1372.42	1380.15	1371.76	1397.99
QTR-2006-2	1408.37	1418.43	1387.52	13/2.42	1383.05	1372.36	1397.48
QTR-2006-3	1403.26	1417.13	1386.38	1372.30	13/9.83	13/0.22	1399.99
QTR-2006-4	1404.91	1419.42	1386.32	1372.25	1380.51	1369.90	1399.89
QTR-2007-1	1407.21	1417.13	1390.63	1372.89	1382.85	1374.67	1397.74
QTR-2007-3	1409.61	1417.42	1391.60	1373.85	1382.19	1370.84	1409.74
QTR-2008-2	1415.33	1417.33	1406.98	1385.69	1395.04	1379.15	1414.16
QTR-2008-3	1412.64	1418.64	1393.61	1376.05	1385.14	1373.43	1413.10
QTR-2009-2	1409.86	1417.98	1390.72	1374.15	1381.58	1374.49	1403.78
QTR-2009-3	1408.87	1417.88	1389.01	1372.47	1380.60	1370.31	1407.03
QTR-2010-2	1413.98	1418.11	1405.12	1381.85	1390.80	1375.51	1414.59
QTR-2010-3	1411.22	1419.23	1392.72	1374.81	1383.50	1374.39	1413.39
QIR-2011-2	1409.32	1418.12	1389.92	1374.80	1382.48	1374.55	1403.83
QTR-2011-3	1411.24	1418.58	1391.87	13/3.60	1382.88	1373.56	1411.18
QTR-2012-2	1412.85	1418.13	1399.77	13/7.74	1388.74	13/5.41	1413.29
QTR-2012-3	1408.70	1418.08	1390.03	1372.72	1381.33	1309.47	1410.77
QTR-2013-2	1411.47	1410.93	1391.01	1373.34	1300.23	1375.31	1402.57
QTR-2013-4	1410.46	1417.32	1391.21	1373.05	1382.79	1370.11	1407.27
QTR-2014-2	1407.60	1410.90	1307.42	1372.03	1303.19	1374.23	1400.05
OTP 2015 2	1407.74	1417.00	1405 17	1372.10	1301.27	1371.75	1404.55
OTR-2015-2	1412.00	1415.15	1303.87	1376.77	1386.40	1373.75	1409.70
OTR-2015-4	1412.00	1418.89	1391.46	1374.49	1383 76	1372.41	1408 79
OTR-2016-1	1412.60	1420.38	1394 97	1377.65	1387 59	1374.66	1405.38
OTR-2016-2	1412.00	1418.83	1406 92	1384 72	1395.85	1376 79	1410.62
OTR-2016-3	1412.06	1419.50	1393 22	1375.65	1386.20	1373 11	1414.29
OTR-2016-4	1412.00	1419.91	1390.81	1373.60	1382.98	1373.11	1408 39
OTR-2017-1	1408.24	1419.54	1389.29	1372.83	1381.40	1373.83	1403.49
QTR-2017-2	1410.15	1419.00	1389.52	1373.35	1386.96	1373.96	1402.41
QTR-2017-3	1410.40	1419.35	1392.04	1372.70	1383.00	1372.12	1409.31
QTR-2018-1	1408.01	1418.76	1389.65	1372.37	1381.38	1374.21	1402.92
QTR-2018-3	1410.46	1417.88	1397.84	1375.90	1389.87	1374.85	1410.27
QTR-2019-1	1413.80	1418.53	1400.72	1383.19	1391.10	1377.89	1411.27
QTR-2019-3	1412.07	1422.34	1399.14	1377.58	1390.40	1374.46	1415.12
QTR-2020-1	1414.38	1424.75	1399.62	1378.73	1390.27	1374.60	1411.49
QTR-2020-2	1414.67	1427.03	1403.73	1380.90	1394.55	1375.70	1415.83
QTR-2020-3	1411.10	1428.23	1394.10	1375.29	1387.19	1373.30	1414.78
QTR-2021-1	1410.62	1425.54	1390.69	1375.14	1386.42	1374.19	1405.72
QTR-2021-3	1410.46	1426.36	1392.03	1373.93	1384.00	1371.92	1412.38
QTR-2022-1	1408.46	1424.04	1389.13	1372.69	1381.70	1373.66	1404.24
QTR-2022-3	1408.65	1421.92	1390.69	1371.45	1379.75	1370.26	1408.57
QTR-2023-1	1405.85	1419.93	1386.32	1370.00	1378.27	1369.80	1400.39
QTR-2023-3	1405.35	1418.68	1386.93	1370.75	1379.99	1370.86	1398.38
QTR-2024-1	1405.43	1418.98	1387.26	1372.18	1379.84	1370.80	1397.63
Mean	1410.18	1419.90	1392.70	1374.95	1384.61	1373.36	1405.98
SD	2.61	2.68	5.32	3.36	4.29	2.35	5.71
Maximum	1415.33	1428.23	1406.98	1385.69	1395.85	1379.15	1415.83
Minimum	1403.26	1415.13	1386.32	1370.00	1378.27	1369.10	1397.48
Range	12.07	13.10	20.66	15.69	17.58	10.05	18.35
	Hydraulic	Gradient	0.03	1			

Table 9: Comparative Statistics - AP4-MW1 (Upgradient)

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	115.1	79.5	93.2	Yes
Chloride	mg/L	NP-PL	11.00	7.57		Yes
Fluoride	mg/L	CUSUM	1.95	< 1.00	0.73	Yes
pH, Field	pH units	CUSUM	6.49, 8.00	7.10	7.11, 7.25	Yes
Sulfate	mg/L	CUSUM	31.6	23.8	23.6	Yes
Total Dissolved Solids	mg/L	CUSUM	584	402	434	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 10. Comparative Statistics - AP4-MW2 (Upgradient)

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	402	290	297	Yes
Chloride	mg/L	NP-PL	113	99.9		Yes
Fluoride	mg/L	NP-PL	0.94	< 1.00		Yes - See Text
pH, Field	pH units	CUSUM	6.55, 7.85	6.97	6.91, 7.20	Yes
Sulfate	mg/L	CUSUM	1027	873	856	Yes
Total Dissolved Solids	mg/L	NP-PL	2360	1610		Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

Table 11. Comparative Statistics - AP4-MW3

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	105.2	78.1	86.5	Yes
Chloride	mg/L	NP-PL	12.40	< 5.00		Yes
Fluoride	mg/L	CUSUM	2.48	1.27	1.09	Yes
pH, Field	pH units	CUSUM	6.81, 7.99	7.16	6.98, 7.40	Yes
Sulfate	mg/L	CUSUM	48.2	20.0	28.3	Yes
Total Dissolved Solids	mg/L	CUSUM	567	360	435	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 12. Comparative Statistics - AP4-MW4

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	153	108	109	Yes
Chloride	mg/L	NP-PL	8.99	< 5.00		Yes
Fluoride	mg/L	CUSUM	1.67	1.09	0.97	Yes
pH, Field	pH units	CUSUM	6.73, 7.79	7.05	6.83, 7.26	Yes
Sulfate	mg/L	CUSUM	180	130	108	Yes
Total Dissolved Solids	mg/L	CUSUM	746	526	523	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 13. Comparative Statistics - AP4-MW5

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100	-	Yes
Calcium, Total	mg/L	CUSUM	798	500	450	Yes
Chloride	mg/L	CUSUM	15.58	6.52	6.37	Yes
Fluoride	mg/L	NP-PL	0.664	< 1.00	-	Yes - See Text
pH, Field	pH units	CUSUM	6.32, 7.63	6.62	6.43, 6.98	Yes
Sulfate	mg/L	NP-PL	1630	1680		No - Potential Exceedance
Total Dissolved Solids	mg/L	CUSUM	4040	2510	2308	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

Table 14. Comparative Statistics - AP4-MW6

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitorin g Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	126.9	99.6	101.9	Yes
Chloride	mg/L	NP-PL	5.28	< 5.00		Yes
Fluoride	mg/L	CUSUM	2.90	1.44	1.47	Yes
pH, Field	pH units	CUSUM	6.72, 7.82	7.07	6.69, 7.27	Yes
Sulfate	mg/L	CUSUM	114.9	66.3	60.5	Yes
Total Dissolved Solids	mg/L	CUSUM	687	438	472	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 15. Comparative Statistics - AP4-MW7

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitoring Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	NP-PL	79.0	65.9		Yes
Chloride	mg/L	CUSUM	17.9	16.0	18.3	No - Potential Exceedance
Fluoride	mg/L	NP-PL	1.02	< 1.00		Yes
pH, Field	pH units	CUSUM	6.87, 8.09	7.26	6.91, 7.48	Yes
Sulfate	mg/L	CUSUM	63.2	34.6	43.0	Yes
Total Dissolved Solids	mg/L	CUSUM	732	466	525	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Figures

MONITORING WELL GROUNDWATER ELEVATION (ft AMSL)

1'' = 150' FEET

FIGURE 1 ASH LANDFILL NO. 4 GROUNDWATER CONTOURS FEBRUARY 2024

FIGURE 2 Sheldon Station Ash Landfill No. 4 Groundwater Elevations

wsp

APPENDIX A

Analytical Report and Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5 6

Attn: Todd A. Chinn Nebraska Public Power District 4500 West Pella Road Hallam, Nebraska 68368 Generated 3/26/2024 3:53:15 PM Revision 1

JOB DESCRIPTION

Sheldon Station Ash Landfill #4 CCR New Permit

JOB NUMBER

310-275709-1

EOL.

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Authorized for release by Matthew Hummel, Project Manager I <u>Matthew.Hummel@et.eurofinsus.com</u> (319)595-2010 Generated 3/26/2024 3:53:15 PM Revision 1 1

Eurofins Cedar Falls is a laboratory within Eurofins Environment Testing North Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	8
Definitions	16
QC Sample Results	17
QC Association	19
Chronicle	21
Certification Summary	24
Method Summary	25
Chain of Custody	26
Receipt Checklists	28

Eurofins Cedar Falls

Job Narrative 310-275709-1

REVISION

The report being provided is a revision of the original report sent on 3/11/2024. The report (revision 1) is being revised due to After issuing the report the client contacted the lab questioning IC data when compared to historical results. The lab investigated IC data for samples: AP4-MW2 (310-275709-2), AP4-MW3 (310-275709-3), AP4-MW4 (310-275709-4), AP4-MW5 (310-275709-5). AP4-MW2 (310-275709-2) was reran for Fluride at a 5x dilution where previously reported at a 10x dilution. AP4-MW3 (310-275709-3) was found to have a data entry error and the results for Chloride and Fluoride were switched. AP4-MW4 (310-275709-4) and AP4-MW5 (310-275709-5) were reran to confirm and the lab found the original results acceptable.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/28/2024 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C.

HPLC/IC

Method 9056A_ORGFM_28D: The following samples were diluted due to the nature of the sample matrix: AP4-MW1 (310-275709-1), AP4-MW2 (310-275709-2), AP4-MW3 (310-275709-3), AP4-MW4 (310-275709-4), AP4-MW5 (310-275709-5), AP4-MW6 (310-275709-6), AP4-MW7 (310-275709-7) and AP4-MW Blind Duplicate (310-275709-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6020B: The continuing calibration verification (CCV) associated with batch 310-414986 recovered above the upper control limit for Boron. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: AP4-MW1 (310-275709-1) and AP4-MW2 (310-275709-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Sample Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-275709-1	AP4-MW1	Water	02/26/24 09:48	02/28/24 09:05
310-275709-2	AP4-MW2	Water	02/26/24 10:23	02/28/24 09:05
310-275709-3	AP4-MW3	Water	02/26/24 10:56	02/28/24 09:05
310-275709-4	AP4-MW4	Water	02/26/24 11:49	02/28/24 09:05
310-275709-5	AP4-MW5	Water	02/26/24 13:49	02/28/24 09:05
310-275709-6	AP4-MW6	Water	02/26/24 13:19	02/28/24 09:05
310-275709-7	AP4-MW7	Water	02/26/24 12:18	02/28/24 09:05
310-275709-8	AP4-MW Blind Duplicate	Water	02/26/24 00:00	02/28/24 09:05

Job ID: 310-275709-1

Detection Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW1

•								•	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.57		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	23.8		5.00		mg/L	5		9056A	Total/NA
Calcium	79.5		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	402		50.0		mg/L	1		SM 2540C	Total/NA
рН	7.3	HF	1.0		SU	1		SM 4500 H+ B	Total/NA
-									

Client Sample ID: AP4-MW2

Analyte Chloride Sulfate	Result 99.9 873	Qualifier	RL 10.0	MDL	Unit mg/L mg/L	Dil Fac 10 10	D	Method 9056A 9056A	Prep Type Total/NA Total/NA
Calcium	290		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	1610		250		mg/L	1		SM 2540C	Total/NA
рН	7.1	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Sulfate	20.0		5.00		mg/L	5	9056A	Total/NA
Fluoride	1.27		1.00		mg/L	5	9056A	Total/NA
Calcium	78.1		0.500		mg/L	1	6020B	Total/NA
Total Dissolved Solids	360		50.0		mg/L	1	SM 2540C	Total/NA
pH	7.3	HF	1.0		SU	1	SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	130		5.00		mg/L	5	_	9056A	Total/NA
Fluoride	1.09		1.00		mg/L	5		9056A	Total/NA
Calcium	108		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	526		50.0		mg/L	1		SM 2540C	Total/NA
pH	7.2	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.52		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	1680		20.0		mg/L	20		9056A	Total/NA
Calcium	500		2.00		mg/L	4		6020B	Total/NA
Total Dissolved Solids	2510		250		mg/L	1		SM 2540C	Total/NA
pH	6.9	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW6

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	66.3		5.00		mg/L	5	_	9056A	Total/NA
Fluoride	1.44		1.00		mg/L	5		9056A	Total/NA
Calcium	99.6		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	438		50.0		mg/L	1		SM 2540C	Total/NA
pH	7.2	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 310-275709-6

Eurofins Cedar Falls

Job ID: 310-275709-1

Lab Sample ID: 310-275709-1

Lab Sample ID: 310-275709-2

Lab Sample ID: 310-275709-3

Lab Sample ID: 310-275709-4

Lab Sample ID: 310-275709-5

Detection Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Туре
Chloride	16.0		5.00		mg/L	5	_ (9056A	Total/NA
Sulfate	34.6		5.00		mg/L	5	9	9056A	Total/NA
Calcium	65.9		0.500		mg/L	1	(6020B	Total/NA
Total Dissolved Solids	466		50.0		mg/L	1		SM 2540C	Total/NA
pH	7.5	HF	1.0		SU	1	:	SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW Blind Duplicate

Analyte Result Qualifier MDL Unit RL Dil Fac D Method Prep Type Chloride 103 5.00 mg/L 5 9056A Total/NA Sulfate 935 20.0 mg/L 20 9056A Total/NA Calcium 284 0.500 mg/L 6020B Total/NA 1 **Total Dissolved Solids** 1740 50.0 mg/L 1 SM 2540C Total/NA pН SU SM 4500 H+ B 7.2 HF 1.0 1 Total/NA

Eurofins Cedar Falls

Job ID: 310-275709-1

Lab Sample ID: 310-275709-7

Lab Sample ID: 310-275709-8

Client Sample Results

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW1 Date Collected: 02/26/24 09:48 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions	, Ion Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.57		5.00		mg/L			03/07/24 19:43	5
Sulfate	23.8		5.00		mg/L			03/07/24 19:43	5
Fluoride	<1.00		1.00		mg/L			03/07/24 19:43	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100	^+	0.100		mg/L		02/29/24 09:00	02/29/24 18:25	1
Calcium	79.5		0.500		mg/L		02/29/24 09:00	02/29/24 18:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	402		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.3	HF	1.0		SU			02/28/24 11:02	1

Matrix: Water

Lab Sample ID: 310-275709-1

Eurofins Cedar Falls

Client Sample Results

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW2 Date Collected: 02/26/24 10:23 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions	, Ion Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	99.9		10.0		mg/L			03/07/24 19:56	10
Sulfate	873		10.0		mg/L			03/07/24 19:56	10
Fluoride	<1.00		1.00		mg/L			03/25/24 23:24	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100	^+	0.100		mg/L		02/29/24 09:00	02/29/24 18:29	1
Calcium	290		0.500		mg/L		02/29/24 09:00	02/29/24 18:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1610		250		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.1	HF	1.0		SU		. <u> </u>	02/28/24 11:04	1

Matrix: Water

Job ID: 310-275709-1

Lab Sample ID: 310-275709-2

Eurofins Cedar Falls

Client Sample Results

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW3 Date Collected: 02/26/24 10:56 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions.	lon Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			03/07/24 20:09	5
Sulfate	20.0		5.00		mg/L			03/07/24 20:09	5
Fluoride	1.27		1.00		mg/L			03/07/24 20:09	5
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:37	1
Calcium	78.1		0.500		mg/L		02/29/24 09:00	02/29/24 17:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	360		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.3	HE	1.0		SU			02/28/24 11:05	1

Job ID: 310-275709-1

Matrix: Water

Lab Sample ID: 310-275709-3
Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW4 Date Collected: 02/26/24 11:49 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions	, Ion Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			03/07/24 20:22	5
Sulfate	130		5.00		mg/L			03/07/24 20:22	5
Fluoride	1.09		1.00		mg/L			03/07/24 20:22	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:44	1
Calcium	108		0.500		mg/L		02/29/24 09:00	02/29/24 17:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	526		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	1.0		SU		·	02/28/24 11:06	1

Job ID: 310-275709-1

Matrix: Water

Lab Sample ID: 310-275709-4

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW5 Date Collected: 02/26/24 13:49 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions	, Ion Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.52		5.00		mg/L			03/07/24 15:50	5
Sulfate	1680		20.0		mg/L			03/08/24 11:40	20
Fluoride	<1.00		1.00		mg/L			03/07/24 15:50	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:51	1
Calcium	500		2.00		mg/L		02/29/24 09:00	03/01/24 17:38	4
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2510		250		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	6.9	HF	1.0		SU			02/28/24 11:07	1

3/26/2024 (Rev. 1)

Matrix: Water

Lab Sample ID: 310-275709-5

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW6 Date Collected: 02/26/24 13:19 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions	lon Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			03/07/24 15:50	5
Sulfate	66.3		5.00		mg/L			03/07/24 15:50	5
Fluoride	1.44		1.00		mg/L			03/07/24 15:50	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:40	1
Calcium	99.6		0.500		mg/L		02/29/24 09:00	02/29/24 17:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	438		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	1.0		SU			02/28/24 11:08	1

Job ID: 310-275709-1

Matrix: Water

Lab Sample ID: 310-275709-6

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW7 Date Collected: 02/26/24 12:18 Date Received: 02/28/24 09:05

Method: SW846 9056A - Anions.	lon Chro	matograph	v						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.0		5.00		mg/L			03/07/24 21:01	5
Sulfate	34.6		5.00		mg/L			03/07/24 21:01	5
Fluoride	<1.00		1.00		mg/L			03/07/24 21:01	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:54	1
Calcium	65.9		0.500		mg/L		02/29/24 09:00	02/29/24 17:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	466		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.5	HE	1.0		SU			02/28/24 11:09	1

Job ID: 310-275709-1

Matrix: Water

Lab Sample ID: 310-275709-7

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW Blind Duplicate Date Collected: 02/26/24 00:00 Date Received: 02/28/24 09:05

Lab Sample ID: 310-275709-8 Matrix: Water

Job ID: 310-275709-1

Method: SW846 9056A - Anions,	lon Chro	matograph	у						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	103		5.00		mg/L			03/07/24 21:41	5
Sulfate	935		20.0		mg/L			03/08/24 11:53	20
Fluoride	<1.00		1.00		mg/L			03/07/24 21:41	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		02/29/24 09:00	02/29/24 17:58	1
Calcium	284		0.500		mg/L		02/29/24 09:00	02/29/24 17:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1740		50.0		mg/L			02/28/24 19:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	1.0		SU			02/28/24 11:10	1

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit Job ID: 310-275709-1

6

7

Qualifiers

Metals Qualifier **Qualifier Description** ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased. **General Chemistry** Qualifier **Qualifier Description** HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis ¤ %R Percent Recovery CFL **Contains Free Liquid** CFU **Colony Forming Unit** CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent NEG POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC **Quality Control** Relative Error Ratio (Radiochemistry) RER RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

RL

1.00

1.00

0.200

MDL Unit

mg/L

mg/L

mg/L

D

Prepared

Lab Sample ID: MB 310-415601/3

Lab Sample ID: LCS 310-415601/4

Matrix: Water

Matrix: Water

Analyte

Chloride

Sulfate

Fluoride

Analysis Batch: 415601

Method: 9056A - Anions, Ion Chromatography

MB MB

<1.00

<1.00

<0.200

Result Qualifier

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

Client Sample ID: Method Blank

Analyzed

03/07/24 17:06

03/07/24 17:06

03/07/24 17:06

Client Sample ID: Lab Control Sample

5

8

Analysis Batch: 415601										
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifie	r Unit		D %Rec	Limits	
Chloride			10.0	9.948		mg/L		99	90 - 110	
Sulfate			10.0	10.35		mg/L		104	90 - 110	
Fluoride			2.00	1.996		mg/L		100	90 - 110	
Lab Sample ID: MB 310-416990/3							c	lient Sa	nple ID: Method	d Blank
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 416990										
•	MB	MB								
Analyte	Result	Qualifier		RL	MDL Uni	t	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1	.00	mg	/L			03/25/24 22:55	1
Sulfate	<1.00		1	.00	mg	/L			03/25/24 22:55	1
Fluoride	<0.200		0.2	200	mg	′L			03/25/24 22:55	1
Lab Sample ID: LCS 310-416990/4						CI	ient S	Sample II	D: Lab Control	Sample
Matrix: Water								•	Prep Type: To	otal/NA

Matrix: Water Analysis Batch: 416990

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.20		mg/L		102	90 - 110	
Sulfate	10.0	10.74		mg/L		107	90 - 110	
Fluoride	2.00	2.068		mg/L		103	90 - 110	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-41479 Matrix: Water Analysis Batch: 415067							Clie	ent Samı	ole ID: Metho Prep Type: 1 Prep Batch:	d Blank ^T otal/NA 414797	
	MB	MB									
Analyte	Result	Qualifier	RI	-	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Boron	<0.100		0.100)		mg/L		02/2	29/24 09:00	03/01/24 17:17	1
Calcium	<0.500		0.500)		mg/L		02/2	29/24 09:00	03/01/24 17:17	1
Lab Sample ID: LCS 310-4147	'97/2-A						Client	t Sa	mple ID:	Lab Control	Sample
Matrix: Water										Prep Type: 1	otal/NA
Analysis Batch: 415067										Prep Batch:	414797
-			Spike	LCS	LCS	;				%Rec	
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	
Calcium			2.00	2.010			ma/L		100	80 - 120	

QC Sample Results

Job ID: 310-275709-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 310-41	14797/2-A							CI	ient	Sai	nple ID	: Lab Co	ntrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 415133												Prep B	atch: 4	14797
			Spike		LCS	LCS	;					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Boron			0.200		0.1857			mg/L			93	80 - 120		
L ab Sample ID: 310-275709											Client	Sample I	D· ΔΡ4	1-MW4
Matrix: Water	400										onent	Pren Tv	ne To	tal/NA
Analysis Batch: 414986												Pron B	atch: 4	14797
Analysis Batch. 414500	Sample	Sample			ווס	ווס						перь	aton. 4	RPD
Analyte	Result	Qualifier			Result	Qua	lifier	Unit		D			RPD	Limit
Boron	<0.100				<0.100			ma/L					NC	20
Calcium	108				108.9			ma/l					1	20
Method: SM 2540C - So	lids, Tota	al Dissolve	ed (TDS	5)										
Lab Sample ID: MB 310-414	4810/1									Clie	ont Sam	nle ID: M	ethod	Blank
Matrix: Water										one	un oun	Pren Tv	ne [.] To	tal/NA
Analysis Batch: 414810												перту	pc. 10	
Analysis Batch. 414010		MB MB												
Analyte	Re	sult Qualifier		RI		мпі	Unit		р	Р	renared	Δnalv	zed	Dil Fac
Total Dissolved Solids	<			50.0	·		ma/l			-	lepaleu	<u></u>	19.27	1
		00.0		00.0			iiig/L					02/20/24	10.27	
Lab Sample ID: LCS 310-41	4810/2							CI	ient	Sai	nple ID	: Lab Cor	ntrol S	ample
Matrix: Water											· ·	Prep Tv	pe: To	tal/NA
Analysis Batch: 414810														
			Spike		LCS	LCS	5					%Rec		
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Total Dissolved Solids			1000		966.0			mg/L		-	97	90 - 110		
Lab Sample ID: 310-275709	9-3 DU										Client	Sample I	D: AP4	I-MW3
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 414810														
	Sample	Sample			DU	DU								RPD
Analyte	Result	Qualifier			Result	Qua	lifier	Unit		D			RPD	Limit
Total Dissolved Solids	360				352.0			mg/L					2	20
Method: SM 4500 H+ B	- pH													
	4740/44							0		•				
Lab Sample ID: LCS 310-41	14719/11							U	ient	Sai	npie iD	: Lab Col		ample
Matrix: water												Prep ly	pe: Io	tal/NA
Analysis Batch: 414/19			0									0/ D		
A such da			Spike		LUS	LUS		1194		_	0/ D	%Rec		
Analyte			Added		Result	Qua	lifier	Unit		<u> </u>	%Rec	Limits		
рН			7.00		7.0			SU			100	98 - 102		
Lab Sample ID: 310-275709)-1 DU										Client	Sample I	D: AP4	I-WW1
Matrix: Water	•											Pren Tv	pe: To	tal/NA
Analysis Batch: 414719														
	Sample	Sample			DU	DU								RPD
Analyte	Result	Qualifier			Result	Qua	lifier	Unit		D			RPD	Limit
pH	7.3	HF			7.3			SU					0.1	20
														= 2

QC Association Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit Job ID: 310-275709-1

HPLC/IC

Analysis Batch: 415601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-1	AP4-MW1	Total/NA	Water	9056A	
310-275709-2	AP4-MW2	Total/NA	Water	9056A	
310-275709-3	AP4-MW3	Total/NA	Water	9056A	
310-275709-4	AP4-MW4	Total/NA	Water	9056A	
310-275709-5	AP4-MW5	Total/NA	Water	9056A	
310-275709-5	AP4-MW5	Total/NA	Water	9056A	
310-275709-6	AP4-MW6	Total/NA	Water	9056A	
310-275709-7	AP4-MW7	Total/NA	Water	9056A	
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	9056A	
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	9056A	
MB 310-415601/3	Method Blank	Total/NA	Water	9056A	
LCS 310-415601/4	Lab Control Sample	Total/NA	Water	9056A	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-2	AP4-MW2	Total/NA	Water	9056A	
MB 310-416990/3	Method Blank	Total/NA	Water	9056A	
LCS 310-416990/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 414797

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-1	AP4-MW1	Total/NA	Water	3005A	
310-275709-2	AP4-MW2	Total/NA	Water	3005A	
310-275709-3	AP4-MW3	Total/NA	Water	3005A	
310-275709-4	AP4-MW4	Total/NA	Water	3005A	
310-275709-5	AP4-MW5	Total/NA	Water	3005A	
310-275709-6	AP4-MW6	Total/NA	Water	3005A	
310-275709-7	AP4-MW7	Total/NA	Water	3005A	
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	3005A	
MB 310-414797/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-414797/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-275709-4 DU	AP4-MW4	Total/NA	Water	3005A	

Analysis Batch: 414986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-1	AP4-MW1	Total/NA	Water	6020B	414797
310-275709-2	AP4-MW2	Total/NA	Water	6020B	414797
310-275709-3	AP4-MW3	Total/NA	Water	6020B	414797
310-275709-4	AP4-MW4	Total/NA	Water	6020B	414797
310-275709-5	AP4-MW5	Total/NA	Water	6020B	414797
310-275709-6	AP4-MW6	Total/NA	Water	6020B	414797
310-275709-7	AP4-MW7	Total/NA	Water	6020B	414797
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	6020B	414797
310-275709-4 DU	AP4-MW4	Total/NA	Water	6020B	414797
_ Analysis Batch: 415	5067				

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-275709-5	AP4-MW5	Total/NA	Water	6020B	414797
MB 310-414797/1-A	Method Blank	Total/NA	Water	6020B	414797

Eurofins Cedar Falls

5

9

QC Association Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Metals (Continued)

Analysis Batch: 415067 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 310-414797/2-A	Lab Control Sample	Total/NA	Water	6020B	414797
Analysis Batch: 4151	133				
Analysis Batch: 4151 - Lab Sample ID	I 33 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch

General Chemistry

Analysis Batch: 414719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-1	AP4-MW1	Total/NA	Water	SM 4500 H+ B	
310-275709-2	AP4-MW2	Total/NA	Water	SM 4500 H+ B	
310-275709-3	AP4-MW3	Total/NA	Water	SM 4500 H+ B	
310-275709-4	AP4-MW4	Total/NA	Water	SM 4500 H+ B	
310-275709-5	AP4-MW5	Total/NA	Water	SM 4500 H+ B	
310-275709-6	AP4-MW6	Total/NA	Water	SM 4500 H+ B	
310-275709-7	AP4-MW7	Total/NA	Water	SM 4500 H+ B	
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	SM 4500 H+ B	
LCS 310-414719/11	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
310-275709-1 DU	AP4-MW1	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 414810

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-275709-1	AP4-MW1	Total/NA	Water	SM 2540C	
310-275709-2	AP4-MW2	Total/NA	Water	SM 2540C	
310-275709-3	AP4-MW3	Total/NA	Water	SM 2540C	
310-275709-4	AP4-MW4	Total/NA	Water	SM 2540C	
310-275709-5	AP4-MW5	Total/NA	Water	SM 2540C	
310-275709-6	AP4-MW6	Total/NA	Water	SM 2540C	
310-275709-7	AP4-MW7	Total/NA	Water	SM 2540C	
310-275709-8	AP4-MW Blind Duplicate	Total/NA	Water	SM 2540C	
MB 310-414810/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-414810/2	Lab Control Sample	Total/NA	Water	SM 2540C	
310-275709-3 DU	AP4-MW3	Total/NA	Water	SM 2540C	

Job ID: 310-275709-1

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

_			Dilution	Batch			Prepared
Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 19:43
Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Analysis	6020B		1	414986	A6US	EET CF	02/29/24 18:25
Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:02
	Analysis Prep Analysis Analysis Analysis	HypeInterfoctAnalysis9056APrep3005AAnalysis6020BAnalysisSM 2540CAnalysisSM 4500 H+ B	HypeHierhouHerhouAnalysis9056APrep3005AAnalysis6020BAnalysisSM 2540CAnalysisSM 4500 H+ B	TypeMethodRefAnalysis9056A5Prep3005AAnalysis6020B1AnalysisSM 2540C1AnalysisSM 4500 H+ B1	Hype Method Hethod Hethod <td>Human Human <th< td=""><td>Hot Hod Hot Hod EET CF Analysis 9056A 5 415601 DHM5 EET CF Prep 3005A 414797 QTZ5 EET CF Analysis 6020B 1 414986 A6US EET CF Analysis SM 2540C 1 414810 D7CP EET CF Analysis SM 4500 H+ B 1 414719 W9YR EET CF</td></th<></td>	Human Human <th< td=""><td>Hot Hod Hot Hod EET CF Analysis 9056A 5 415601 DHM5 EET CF Prep 3005A 414797 QTZ5 EET CF Analysis 6020B 1 414986 A6US EET CF Analysis SM 2540C 1 414810 D7CP EET CF Analysis SM 4500 H+ B 1 414719 W9YR EET CF</td></th<>	Hot Hod EET CF Analysis 9056A 5 415601 DHM5 EET CF Prep 3005A 414797 QTZ5 EET CF Analysis 6020B 1 414986 A6US EET CF Analysis SM 2540C 1 414810 D7CP EET CF Analysis SM 4500 H+ B 1 414719 W9YR EET CF

Client Sample ID: AP4-MW2 Date Collected: 02/26/24 10:23 Date Received: 02/28/24 09:05

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	416990	QTZ5	EET CF	03/25/24 23:24
Total/NA	Analysis	9056A		10	415601	DHM5	EET CF	03/07/24 19:56
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 18:29
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:04

Client Sample ID: AP4-MW3 Date Collected: 02/26/24 10:56 Date Received: 02/28/24 09:05

Dron Tyme	Batch	Batch	Dum	Dilution	Batch	Amelyot	l ah	Prepared
Prep Type	туре	wethod	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 20:09
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 17:37
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:05

Client Sample ID: AP4-MW4 Date Collected: 02/26/24 11:49

Date Received: 02/28/24 09:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 20:22
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 17:44
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:06

Job ID: 310-275709-1

Lab Sample ID: 310-275709-1 Matrix: Water

Matrix: Water

Lab Sample ID: 310-275709-3 Matrix: Water

Lab Sample ID: 310-275709-4

Lab Sample ID: 310-275709-2

Eurofins Cedar Falls

Matrix: Water

Dilution

Factor

5

20

1

4

1

1

Run

Batch

Number Analyst

415601 DHM5

415601 DHM5

414797 QTZ5

414986 A6US

414797 QTZ5

415067 A6US

414810 D7CP

414719 W9YR

Lab

EET CF

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Batch

Method

9056A

9056A

3005A

6020B

3005A

6020B

SM 2540C

SM 4500 H+ B

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Lab Sample ID: 310-275709-5 Matrix: Water

Prepared

or Analyzed

03/07/24 15:50

03/08/24 11:40

02/29/24 09:00

02/29/24 17:51

02/29/24 09:00

03/01/24 17:38

02/28/24 19:27

02/28/24 11:07

Lab Sample ID: 310-275709-6

Lab Sample ID: 310-275709-7

Matrix: Water

Matrix: Water

Client Sample ID: AP4-MW6

Date Collected: 02/26/24 13:19

Date Received: 02/28/24 09:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 15:50
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 17:40
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:08

Client Sample ID: AP4-MW7 Date Collected: 02/26/24 12:18 Date Received: 02/28/24 09:05

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 21:01
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 17:54
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:09

Client Sample ID: AP4-MW Blind Duplicate Date Collected: 02/26/24 00:00 Date Received: 02/28/24 09:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	415601	DHM5	EET CF	03/07/24 21:41
Total/NA	Analysis	9056A		20	415601	DHM5	EET CF	03/08/24 11:53
Total/NA	Prep	3005A			414797	QTZ5	EET CF	02/29/24 09:00
Total/NA	Analysis	6020B		1	414986	A6US	EET CF	02/29/24 17:58
Total/NA	Analysis	SM 2540C		1	414810	D7CP	EET CF	02/28/24 19:27
Total/NA	Analysis	SM 4500 H+ B		1	414719	W9YR	EET CF	02/28/24 11:10

Lab Sample ID: 310-275709-8

Matrix: Water

3/26/2024 (Rev. 1)

Page 23 of 28

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Lab Chronicle

Accreditation/Certification Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Oregon	NELAP	IA100001	09-29-24

Job ID: 310-275709-1

Method Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CF
6020B	Metals (ICP/MS)	SW846	EET CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CF
SM 4500 H+ B	рН	SM	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

.

Cooler/Sample Receipt and Temperatu

Client Information									
Client: NPPD									
City/State:									
Receipt Information 7V									
Date/Time Z-28-29 905 Received By:									
Delivery Type: DPS FedEx FedEx Ground US Mail] Spee-Dee								
Lab Courier 🗌 Lab Field Services 🗌 Client Drop-off									
Condition of Cooler/Containers									
Sample(s) received in Cooler? Yes No If yes: Cooler ID:									
Multiple Coolers?									
Cooler Custody Seals Present? Present No If yes: Cooler custody seals intact? Fes									
Sample Custody Seals Present? Yes Area If yes: Sample custody seals intact?	Yes 🗌								
Trip Blank Present? Yes Mo If yes: Which VOA samples are in coole	r? ↓								
Temperature Record									
Coolant: Set Wet ice Blue ice Dry ice Other: NON	IE								
Thermometer ID: Correction Factor (°C):									
• Temp Blank Temperature - If no temp blank, or temp blank temperature above criteria, proceed to Sample Contained	er Temperature								
Uncorrected Temp (°C): /.4 Corrected Temp (°C): /.4									
Sample Container Temperature									
Container(s) used:									
Uncorrected Temp (°C):									
Corrected Temp (°C):									
Exceptions Noted									
 If temperature exceeds criteria, was sample(s) received same day of sampling? Yes a) If yes: Is there evidence that the chilling process began? Yes 	□ No □ No								
 If temperature is <0°C, are there obvious signs that the integrity of sample containers is complexity (e.g., bulging septa, broken/cracked bottles, frozen solid?) 	romised? □ No								
NOTE. If yes, contact PM before proceeding. If no, proceed with login									
Additional Comments									
•									

Eurofins Cedar Falls 3019 Venture Way

Chain of Custody Record

estAmerica Omaha SC

Cedar Falls, IA 50613 Phone (319) 277-2401 Fax (319) 277-2425				XX V	
Client Information	Sampler Bod A. Chiny	Lab PM:		Carrier Tracking No(s)	COC No:
Client Contact Todd A. Chunn	Phone: 402 787-525	6 E-Mail:			Page:
Company Nebraska Public Power District			Analysis Red	uested	Job #.
Address. 4500 West Pella Road	Due Date Requested NOT MG 174				Preservation Codes:
City Hailam City	TAT Requested (days):				B - NACH N - NONE C - ZA Acetate O - ASNA02
State, Zip: NE, 68368	,				D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2SO3
Phone 787-5256	PO#. Purchase Order not required	(0			G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email: tachinn@nppd com	# OM	No)	emiT g	81	I - Ice U - Acetone J - DI Water V - MCAA
Project Name: Sheldon Station Ash Landfill #4 CCR New Permit	TestAmerica Project #. 31006953	10 86 97) 9[mibloH m2 ,ebi		K - EUTA W - PII 4-5 L - EDA Z - other (specify)
Site: Nebraska		A) OSI dweg	ha Cald , Fluori Short I	01 001	Other:
	Sample C=comp.	Matrix (W=water S=solid, O=wasterioli, eel of mS/N	020 A Boron a 0566 Chloride 3M4500 H+ pH 35460 TD3	1edmuV listo	Concession Increase Made.
	Preserva	tion Code: XX	N N N D		opecial IIIsu ucuolisimore.
AP4-MW1	2-26-2024 Og48 (-	GW	× × × ×		
AP4-MW2	2-26-204 1023 L	GW	x x x x		
AP4-MW3	2-26-2024 10-56 6	GW	X X X X		
AP4-MW4	2-26-2024 1149 C	GW			
AP4-MW5	2-26-2024 1349 C	GW	X X X X		
AP4-MW6	2-26-201 1319 K	GW	x x x x		
AP4-MW7	2-26-2024 1218 C	GW	X X X X		
AP4-MW Blind Duplicate	2-26-2024 NA 6	GW	X X X X		
Possible Hazard Identification		- - -	mple Disposal (A fee may be as	sessed if samples are retain	ed longer than 1 month)
Non-Hazard Hammaole Skin imfant F Deliverable Requested I, II, III V Other (specify)	olson B Unknown Radiological	<u> </u>	ecial Instructions/QC Requirement	sposal by Lab Arch	IVE FOR MORTINS
Empty Kit Relinquished by	Date	Time		Method of Shipment	
Relinquished by Child Color	Date/Time: 7_7_77_7/ / //6/00	Company	Received by	Date/Time: フィフダイレチ	A OCK Company
Relinquished by	Date/Time:	Company	Received by	Date/Time:	Company
Relinquished by	Date/Time:	Company	Received by	Date/Time:	Company
Custody Seals Intact: Custody Seal No Δ Yes Δ No			Cooler Temperature(s) °C and Other Rev	harks.	
			11 12 13 14	7 8 9 10	1 2 3 4 5 6

Client: Nebraska Public Power District

Login Number: 275709 List Number: 1 Creator: Costello, Mackenzie K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Cedar Falls

APPENDIX B Field Notes

							í				
ocatior	n (Site/Fa	cility Nam	ne)_NPT	PD SS :	Ash La	ndfill the	ł		Depth to	_ 10.	7 / <u>31.9</u> of screen
Nell Nu	mber <u>A</u>	R-MU	21	Date_	2-26	2024				Тор	Bottom
Field Pe	rsonnel	I odd F	f. Chir	in Pe	tricie	A.Nou	1al	Р	ump Inta	ake at (ft.	below MP)
Samplin	g Organi	zation N	IPPD	10				F	Purging I	Device; (pump type) Micropurge
dentify	MP	lota	of C	asing				T	otal Volu	ime Purg	$d = 2490 \text{ mL}^{-1}$
			121	C)						
Vell Co	nditions/	Field Obs	servatior	1s: 4-	1°F,	Sunn	y, 9	Imph	1fror	n H	re South
Clock	Water		Purge	Cum.	/	Specific	J.	рН			
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	pH MP 20	Lab	%DO	ORP	Comments
24hr	ft	Setting	mL/min	milliliters		µmhos	1017-20	Accumet		IIIV	
N978	20.52	C9m4	Q10								Start PLMD
A29	20.00	UPM4	910								Cell is full
6000		CPMY	01		120	C015	711		200	220-	
033		10/5	90		14.2	110,5	- 64		J7.1	220,	2
0138	Ż	CPM4	910		12.26	-116.1	7.09		2D.8	222.8	n.
0943		CPM4	910		12.13	716.1	7.09		19.5	217.3	
0948		CPM4	96		12.26	7153	7.1D		20.6	212.8	Sanple#1 500 ml
				1740							Sample#2 250mL
0954	21.21			n ten ten ser							Done
							F)				
			1								

 \sim

							1				
Location	n (Site/Fa	cility Nam	ne) NP	PD SS	Ash 4	indfill#	4		Depth to	_10.9	1 / 31,4 of screen
Well Nu	mber_H	P4-M	WZ	Date_	A-20	0-2024		-		lop	Bottom 9
	ersonnet_	lootd	toph"	nn ·	tatnic	te HA	diak	_ P	ump inta Purging I	ake at (n. Dovico: (pelow MP) & J. T
Samplir			JPPD	varies over				т Т	otal Volu	Jevice, (Ime Purc	red 14 415 al
laenury		POF	Ca)	ing							-4670me
Well Co	nditions/	Field Obs	servation	is:	• (0		0
				55	\mathcal{F} , c	Sunny	-10)mp	n to	DM	Southwest
Clock	Water	Dum Dial	Purge	Cum.		Specific	~LJ	pН			
Time	Deptn below MP	Setting	Rate	Purged in	Temp C°	Conductivity	рп MP-20	Lab	%DO	mv	Comments
24hr	ft		mL/min	milliliters		µmhos		Accumet			
1000	26.05	CPM4	160								Start Phimp
1003		CPM4 10/5	160		12.12	2116	6.99		855	228.0	o Cellis full
IDD8		CPMY	160		12.77	2116	6.96		703	223.1	3
1013		Comit	160		12.88	2122	10.98		109.8	219.8	
1018		CPM4	160	2000	12.88	2128	6.97		684	217.2	
1023	27.31	CPM4 ID/S	160		13.01	2131	6.97		67.4	215.C	Sample #1500ml
	197 - 189 	, .		140		0					Sample #2 250mL
											Duplicate # Soon
											Duplicate #2 250ml
1029											Done
									1		
									7		
				S							
				8				1			

						ſ.,	- 1				
Locatio	n (Site/Fa	cility Nan	ne)NP	DSS	Ash La	and fill-	野牛		Depth to	10.5	5 / <u>35.5</u> of screen
Field Pe			WS C	Date	g-a	e-202	Jourk	_ Р	ump Int:	iop ake at (ft	below MP) 33.5
Samplir	ng Organi	zation]	VPDI	Stiviri	Pan	ICA TI I	10000	F	Purging	Device; (pump type) Macro Purge
Identify	MP_lop	oof (asin	7				T	otal Volu	ume Purg	Jed 3350 ML
Well Co	nditions/	Field Obs	C			\sim	0	. (1	10	\frown
				5	F.(Sunny	. gw	whf	ron	1 th	le Southwest
Clock	Water Depth	Pump Dial	Purge	Cum. Volume		Specific	Hα	I pH		ORP	
Time 24hr	below MP ft	Setting	Rate mL/min	Purged in milliliters	Temp C°	Conductivity µmhos	MP-20	Lab Accumet	%DO	mv	Comments
1036	24.46	CPM4	124								Start Pamp
1041		CPM4 10/5	124		13.93	731.6	7.27		81.6	2 5.5	Cell is full
1046		CPM4	124		14.07	633.1	7.13		20.1	209.3	
idsi		CPM4	124	2000	14.23	1031.4	7.15		21.2	204.6)
105%	25.5	CPM4	124		1438	631.5	7.16		27.8	201.2	Sample #1 500ml
			• [600		. 0					Sample #2 25Dml
103											Dong
100											Grance
					:						
						-			-		
	,										
·		1									
l											

Locatior	Depth to 1.0 / 37.0 of screen													
Well Nu	mber_	P4-M	W4	Date	p-2-	1.2024				Тор	Bottom			
Field Pe	ersonnel	Todd F	1. Chin	$n \neq 1$	atric	JA H.A	Jovak	- P	ump Inta	ake at (ft.	below MP) 07.0			
Samplin	ig Organi	zation	YKYD	- / 22				 -	Jurging I	Device; (pump type) IV IT CFO F Wrge			
Identify	MP-10) of	Casi	ng			5	I	otal Volu	ime Purç	JeaJISO MLS			
	nditions/	Field Obs	onvation		2.00			~	1	0				
				s. O	J.t	-, Sur	My,	ID	mph	fre	omethe Jouthwest			
Clock	Water		Purae	Cum.		Specific	С. () Т	pН	v					
Time	Depth	Pump Dial Setting	Rate	Volume Purged in	Temp C°	Conductivity	PFT MP-20	Lab	%DO	mv	Comments			
24hr	ft	Coung	mL/min	milliliters		µmhos	1111 20	Accumet						
108	23.92	CPM4 10/5	85								Start Pump			
114		CPM4	85		15.14	962.0	7.10		86.1	219.2	Cell TS full			
1119		CPM4	85		15/6	1200	694		29.7	218.8				
1121		CPM-	RS		1549	1080	691		151	2134				
149		10/5 1 PM4	80		1577	0102	702		25	729				
1127		10/5	05		15,11	9108.2	1.04		15.0	200.0				
1134		10/5	85		12.82	888.4	1.D4		14.0	202.7				
1139		CPM4	85	2400	15.91	842.7	7.05		13,8	197.0				
1144		(PM4 10/5	85		15.73	8239	7.06		13.3	188.	3			
149	25.0	CPM4	85		1577	8130	7.05		129	174.6	Simple #1500ml			
1-11		10/5	00	780	10.16	0.2.0			1/21		Sumale #2 250,1			
1151				100							Duriple - 2 acourt			
1134											Obrie			
	1													
									9					
								· · · ·						

							1				
Locatior	n (Site/Fa	cility Nan	ne) NP	PDSS	AshL	and fill#	4		Depth to	10.2	2 136.2 of screen
Well Nu	mber F)P4-W	11.05	Date	2-2	6-202	Í,			Тор	Bottom
Field Pe	rsonne	todd	A.C	hinn	VOLOW	16 AND	iel	Р	ump Inta	ake at (ft	below MP) 34.2
Samplin	o Organi	zation T	(DD)	1.1111	-)			F	, Puraina [Device: (pump type) Micro Purap
Identify	MP Tr	NAF	City	100				T	otal Volu	me Purc	red NaSOwl
laonary		1	<u></u>	Ő							
Well Co	nditions/	Field Obs	servation	is: _	0			0		i i	
			78	of.	Sun	nu.	Imp	h fr	omo	hol	Jest
Cleak	Water		Durgo	Cum.		Specific	· · · · · · · · · · · · · · · · · · ·	ъН			
Time	Depth	Pump Dial	Purge Rate	Volume	Temp C°	Conductivity	pН	Lab	%DO	ORP	Comments
24hr	below MP	Setting	mL/min	Purged in		µmhos	MP-20	Accumet		mv	
0.0		C V2 WALL		miniters							
628	23.24	10/5	102								Startfump
1333		CPMY	102 -		17.32	2528	6.91		89.8	1182	Cell IS full
1221		CPm+	100		11,92	21.35	1.79		7100	IUn-	
10.54		10/5 PPM4	IUL		1012	agus	Vill		102	1121	
1551		10/5	IUL		16.68	2876	6.65		22.8	113.6	,
1344		CPM4 10/5	1D2		16.74	2905	6.63		J.S	122.2	
1349	2395	-CPM4	ID7	1900	103	2900	1012		NS	12910	Sempliff 500x1
to If	5-5-10	10/5	100	1100		2,00	W. WL		1.0		C. N. #2250 1
10-1											Sumple +2 rout
1354											Done
2											
						1					
									1		
					1			e			
					ñ						
					1				I		

Location (Site/Eacility Name) NPPD Landfill #4 Depth to 10, 361 of screen Тор Well Number HP4 - MILDG Date 2-26-2024 **Bottom** Pump Intake at (ft. below MP)______4. Patricia Field Personnet Todd A 4 Chinn Sampling Organization NPDD Purging Device; (pump type) Micro Furge Identify MP Too of Total Volume Purged Pusing 509D bythe end Well Conditions/ Field Observations: From 79° -18mph unny Water Cum. Specific pН Clock Purge ORP Depth Pump Dial Volume Temp C° Conductivity %DO Lab Comments Time Rate MP-20 below MP Setting Purged in mν mL/min umhos Accumet 24hr milliliters ft 96 Pmy 5.8 23 0 96 \$73.D \$3. 23 14.80 7.01 46 Ò, 12 6.97 CPM4 90 23-550 957 i0/c 6.98 742 10.08 9029 5. 6 6.9 PM4 10/5 1247 96 6.99 871 710.6 16.71 252 200 my 86.4 Ŷ 7.D C 257 7.DZ 3 7.D4 9<u>5.0</u> 302 787.S ā6 ର୍ଧ 307 7.57 768.D ST 7.DS 7.87 92.8 258 312 0 2000 7519 7.06 90.S 7.07 29.D 8.12 317 742. 319 5.8 0 24D 324

Page of

Locatior	n (Site/Fa	cility Nan	ne) NF	PD SE	SASh	Landf	1=4		Depth to	Dis	5 / <u>35,5</u> of screen			
Well Nu	mber A	24-MI	NT.	Date	2-21	-2024	- 12 -			Тор	Bottom			
Field Pe	ersonnel	Todd	ACh	inn	Patrici	CANE	wark	Р	ump Inta	ake at (ft.	below MP)_33.5			
Samplir	ig Organi	zation	NPPD)		••••••••••••••••••••••••••••••••••••••		Purging Device; (pump type) Micro Purge						
Identify	MPTO	p of	Casi	NA				Total Volume Purged						
,		r o		Ľ										
Well Co	nditions/	Field Obs	servatior	^{15:} 72	3°F	, Sunn	α,	Imph from the Southwest						
Cleak	Water		Durgo	Cum.		Specific	0'	nH						
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	pH	Lab	%DO	ORP	Comments			
24hr	below MP	Setting	mL/min	Purged in milliliters		µmhos	MP-20	Accumet		mv				
		12414		TTITITILETS	·	1. 1					N1 1 () 1			
12:00	210.6d	10/5	102								Otast tamp			
1203		CPM4	107		1543	795.2	7.50		95.6	199.6	Cell is Sul			
1208		CPMY	102		1544	7946	7.28		84.2	1982				
1212		(PM4	107		CC	7022	771-		821	1011				
143		10/5	NL		12.21	1912.5	1.10		03	1961	0 1 15			
1218	27.15	UPM4 13/5	102		15.59	792.4	7,26		83.1	195.3	Sample #1500mL			
				1700							Sample #2 250mL			
1224				0 • 0				2			None			
,														
									· · · · · · · · · · · · · · · · · · ·					
					Ť	<u> </u>								
						 				-				

APPENDIX C

Time Series Data

APPENDIX D

Comparative Statistical Analysis

Sanitas $^{\rm TM}$ v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 88.24% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:05 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=93.24, Std. Dev.=5.454, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9613, critical = 0.892. Report alpha = 0.00209. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:08 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Chloride Analysis Run 4/15/2024 12:10 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary: Mean=0.7335, Std. Dev.=0.3031, n=17, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9399, critical = 0.892. Report alpha = 0.00209. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 4/15/2024 12:12 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=7.246, Std. Dev.=0.1887, n=17. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9501, critical = 0.892. Report alpha = 0.002018. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 11:38 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=23.57, Std. Dev.=2.016, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9891, critical = 0.892. Report alpha = 0.001694. Dates ending 3/2/2022 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/15/2024 1:25 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=433.5, Std. Dev.=37.68, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9301, critical = 0.892. Report alpha = 0.002106. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 4/15/2024 1:26 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:16 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=297.4, Std. Dev.=26.17, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9371, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:19 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Chloride Analysis Run 4/15/2024 12:20 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 37.5% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 4/15/2024 12:22 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=7.203, Std. Dev.=0.1625, n=17. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9453, critical = 0.892. Report alpha = 0.002018. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 11:40 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=856.1, Std. Dev.=42.66, n=17. Exceedance nullified by following point per option settings. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9342, critical = 0.892. Report alpha = 0.002106. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/15/2024 1:32 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Total Dissolved Solids Analysis Run 4/15/2024 1:40 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:25 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=86.46, Std. Dev.=4.678, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9528, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:27 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931 Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 76.47% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 4/15/2024 1:42 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary: Mean=1.092, Std. Dev.=0.3464, n=17, 5.882% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9173, critical = 0.892. Report alpha = 0.002106. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 4/15/2024 1:45 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.399, Std. Dev.=0.1466, n=17. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9619, critical = 0.892. Report alpha = 0.002018. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 11:47 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=28.25, Std. Dev.=4.977, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9311, critical = 0.892. Report alpha = 0.002106. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/15/2024 1:47 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=434.5, Std. Dev.=29.51, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9615, critical = 0.818. Report alpha = 0.01521. Dates ending 5/16/2017 used for control stats. Standardized h=4.5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 4/15/2024 1:48 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:31 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=109.1, Std. Dev.=10.96, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9569, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:32 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931 Sanitas m v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 4/15/2024 12:33 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931 Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary (based on square transformation): Mean=0.9349, Std. Dev.=0.4633, n=17, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9598, critical = 0.892. Report alpha = 0.002092. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 4/15/2024 1:51 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.264, Std. Dev.=0.1325, n=16. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9275, critical = 0.887. Report alpha = 0.00226. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 11:49 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary: Mean=93.53, Std. Dev.=21.56, n=16. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9551, critical = 0.887. Report alpha = 0.00244. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/16/2024 8:07 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=522.6, Std. Dev.=55.75, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9137, critical = 0.892. Report alpha = 0.002166. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 4/15/2024 1:54 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 88.24% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:43 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary (based on square transformation): Mean=202731, Std. Dev.=108424, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9305, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:44 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931 Sanitas m v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary (based on natural log transformation): Mean=1.852, Std. Dev.=0.2235, n=17, 17.65% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8976, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Chloride Analysis Run 4/15/2024 3:25 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 4/15/2024 12:47 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=6.978, Std. Dev.=0.1639, n=17. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9188, critical = 0.892. Report alpha = 0.00205. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 11:52 AM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Exceeds Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Sulfate Analysis Run 4/15/2024 3:43 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on square transformation): Mean=5324676, Std. Dev.=2749578, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9112, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

> Constituent: Total Dissolved Solids Analysis Run 4/15/2024 3:45 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas m v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:49 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=101.9, Std. Dev.=6.261, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.921, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 4/15/2024 12:50 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931
Sanitas $^{\rm TM}$ v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 4/15/2024 3:49 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=1.473, Std. Dev.=0.3557, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9584, critical = 0.892. Report alpha = 0.002046. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 4/15/2024 12:53 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=7.271, Std. Dev.=0.1388, n=17. Data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.984, critical = 0.892. Report alpha = 0.00205. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 12:06 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on square root transformation): Mean=7.778, Std. Dev.=0.7349, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8957, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/15/2024 3:52 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=471.9, Std. Dev.=53.74, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9491, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 4/15/2024 3:54 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas m v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 4/15/2024 12:58 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Calcium Analysis Run 4/15/2024 12:59 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=11.97, Std. Dev.=1.486, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.916, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Chloride Analysis Run 4/15/2024 3:57 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas[™] v.10.0.10 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 70.59% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 4/15/2024 1:00 PM Sheldon Station Client: NPPD Data: 15059_Analytical Results II_20240415174931

Background Data Summary: Mean=7.482, Std. Dev.=0.1538, n=17. Data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9485, critical = 0.892. Report alpha = 0.00205. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured Analysis Run 4/16/2024 12:02 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=42.98, Std. Dev.=5.065, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9624, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 4/15/2024 4:02 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=525.2, Std. Dev.=51.58, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9697, critical = 0.892. Report alpha = 0.002172. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 4/15/2024 4:04 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

APPENDIX B

Q3 2024 Semi-annual Report

REPORT

Third Quarter 2024 Semi-annual Groundwater Report

Nebraska Public Power District – Sheldon Station

Submitted to:

Nebraska Department of Environment and Energy

Compliance Sector Supervisor, Land Management Division P.O. Box 98922, Lincoln, Nebraska, USA 68509-8922

Submitted by:

Nebraska Public Power District

Sheldon Station, 4500 West Pella Road Hallam, Nebraska 68368

Prepared by:

WSP USA Inc.

7245 W. Alaska Drive, Ste. 200 Lakewood, CO 80226

+1 303 980 0540

GLA21457062.5798-002-RPT-0

October 25, 2024

Table of Contents

1.0	INTRO	DDUCTION	.1
	1.1	Facility Information	.1
	1.2	Purpose	.1
2.0	GROL	JNDWATER MONITORING NETWORK PROGRAM STATUS	.1
	2.1	Completed Key Actions in Third Quarter 2024	.1
	2.2	Installation and Decommissioning of Monitoring Wells	.1
	2.3	Problems and Resolutions	.1
	2.4	Proposed Key Activities for 2025	.2
3.0	GROL	JNDWATER MONITORING ANALYTICAL PROGRAM STATUS	.2
	3.1	Samples Collected	.2
	3.1.1	Groundwater Elevation and Flow Rate	.2
	3.2	Monitoring Data (Analytical Results)	.3
	3.3	Comparative Statistical Analysis	.3
	3.3.1	Definitions	.3
	3.3.2	Potential Exceedances	.3
	3.3.3	False Positives	.4
	3.3.4	Verified Exceedances	.4
	3.4	Program Transitions	.4
	3.4.1	Detection Monitoring	.4
	3.4.2	Alternative Source Demonstrations	.4
	3.4.3	Assessment Monitoring	.4
	3.4.4	Corrective Measures and Assessment	.4
4.0	RECO	DMMENDATIONS AND CLOSING	.5
5.0	REFE	RENCES	.7

TABLES

Table 1: Data Summary Table – AP4-MW1 (U) Table 2: Data Summary Table – AP4-MW2 (U) Table 3: Data Summary Table – AP4-MW3 Table 4: Data Summary Table – AP4-MW4 Table 5: Data Summary Table – AP4-MW5 Table 6: Data Summary Table – AP4-MW6 Table 7: Data Summary Table – AP4-MW7 Table 8: Sheldon Station Ash Landfill No. 4 Groundwater Levels Table 9: Comparative Statistics – AP4-MW1 (U) Table 10: Comparative Statistics – AP4-MW2 (U) Table 11: Comparative Statistics – AP4-MW3 Table 12: Comparative Statistics – AP4-MW4 Table 13: Comparative Statistics – AP4-MW5 Table 14: Comparative Statistics – AP4-MW6 Table 15: Comparative Statistics – AP4-MW7

FIGURES

Figure 1: Ash Landfill No. 4, Groundwater Contours, September 2024 Figure 2: Ash Landfill No. 4 Groundwater Elevations

APPENDICES

Tables

Figures

APPENDIX A Analytical Report and Chain-of-Custody Documentation

APPENDIX B Field Notes

APPENDIX C Time Series Data

APPENDIX D Comparative Statistical Analysis

1.0 INTRODUCTION

WSP USA Inc. (WSP) prepared this report describing the second 2024 semi-annual groundwater sampling event and comparative statistical analysis for Nebraska Public Power District's (NPPD) Sheldon Station Ash Landfill No. 4 (AP4) in Hallam, Nebraska. This report was written to meet the requirements of the site's permitted Sampling and Analysis Plan (SAP; GAUSA 2022a), as approved by the Nebraska Department of Environment and Energy (NDEE) and the federal Coal Combustion Residuals (CCR) Rule's sections on groundwater monitoring and corrective action, 40 Code of Federal Regulations (CFR) 257.90-98 and applicable revisions to the Rule.

1.1 Facility Information

Sheldon Station is owned and operated by NPPD and can generate 225 megawatts (MW) of power. The facility is located in southeastern Nebraska in Section 19, T7N, R6E, and is 18 miles south of Lincoln in Lancaster County. The village of Hallam is the closest community to the site and is 1.5 miles south of the facility. NPPD constructed Sheldon Station in 1958, switching the facility entirely to low-sulfur coal from Wyoming's Powder River Basin in 1974. The active CCR landfill at the site (AP4) contains fly ash and bottom ash.

1.2 Purpose

The United States Environmental Protection Agency's (USEPA) CCR Rule established specific requirements for reporting of groundwater monitoring and corrective action at CCR facilities in 40 CFR 257.90 to 40 CFR 257.98 (USEPA 2015). The permitted SAP for AP4 was developed to comply with both the federal CCR regulations and NDEE requirements (GAUSA 2022a). Under the NDEE reporting requirements, reports are prepared on a semi-annual basis, following each sampling event.

2.0 GROUNDWATER MONITORING NETWORK PROGRAM STATUS

The groundwater monitoring network for the active CCR landfill at Sheldon Station consists of seven monitoring wells as shown in Figure 1. The two upgradient monitoring wells are AP4-MW1 and AP4-MW2, which are marked by (U) throughout the text. The five downgradient monitoring wells are AP4-MW3, AP4-MW4, AP4-MW5, AP4-MW6, and AP4-MW7.

2.1 Completed Key Actions in Third Quarter 2024

A detection monitoring sampling event was completed during the third quarter (Q3) of 2024.

2.2 Installation and Decommissioning of Monitoring Wells

No monitoring wells were installed or decommissioned at Sheldon Station during the Q3 of 2024.

2.3 **Problems and Resolutions**

During the Q3 2024 monitoring event, analysis by Method 9056A required dilution due to the sample matrix, resulting in non-detects with elevated reporting limits for several well-parameter pairs. Results are consistent with past results and required dilutions. The following well-parameter pairs were reported as non-detects with elevated reporting limits:

- chloride, 5x dilution factor, elevated reporting limit equals 5.0 milligrams per liter (mg/L): AP4-MW3, AP4-MW4, and AP4-MW6
- fluoride, 5x dilution factor, elevated reporting limit equals 1.00 mg/L: AP4-MW1, AP4-MW2, AP4-MW5, and AP4-MW7

During review of the Q3 2024 analytical report, a request was made to Eurofins as the contracted analytical laboratory to confirm the reported results for calcium, sulfate, and total dissolved solids, due to differences in the results of the Q3 2024 event when compared to the Q1 2024 event. Eurofins confirmed that no issues were identified with the analysis or quality control associated with the results. Additionally, Eurofins noted that sulfate at AP4-MW5 had been analyzed twice using two different dilution factors, with the results of the two separate analyses found to be internally consistent. While the Q3 2024 results for calcium, sulfate, and total dissolved solids at AP4-MW5 vary from the Q1 2024 results, they are consistent with past results at the well. No changes were made to the analytical report as a result of the sample confirmation.

No other problems were encountered as part of the field and laboratory sampling in Q3 of 2024.

2.4 Proposed Key Activities for 2025

Detection monitoring sampling events are scheduled to occur in Q1 and Q3 of 2025 and will consist of sampling, data review, and comparative statistics. Following each detection monitoring sampling event, a semi-annual report will be provided to NDEE.

3.0 GROUNDWATER MONITORING ANALYTICAL PROGRAM STATUS

Analytical activities associated with the groundwater monitoring program are described below.

3.1 Samples Collected

NPPD staff collected eight initial baseline samples on a quarterly basis between September 15, 2015, and May 16, 2017, at each of the two upgradient and five downgradient monitoring wells. Detection monitoring samples have been collected on a semi-annual basis beginning on September 19, 2017. This report outlines the results of the detection monitoring sampling event that occurred on September 3, 2024. Specific dates for each sample collected as part of the program are provided in Table 1 through Table 7. The analytical report for the September 3, 2024, samples is included as Appendix A and associated field notes are included as Appendix B.

3.1.1 Groundwater Elevation and Flow Rate

Groundwater elevations were measured in each well during each sampling event prior to purging. Elevation measurements can be found in Table 8. Groundwater elevations and interpolated groundwater contours from the September 2024 (Q3 2024) detection monitoring sampling event are shown in Figure 1. Figure 2 shows groundwater elevations over time at the site.

The groundwater flow rate across Ash Landfill 4 was estimated with the equation $V_s = k \times i/n_e$, where:

- V_s is the groundwater flow rate, in feet per day (ft/day).
- k is the hydraulic conductivity in ft/day, estimated at 0.005 ft/day from slug testing results from system wells.
- *i* is the hydraulic gradient in feet per feet (ft/ft), calculated based on groundwater elevations during each monitoring event.
- n_e is the effective porosity, a unitless parameter, estimated to be 0.2 for site soils.

The average groundwater flow rate for September 2024 was estimated to be 7 x 10^{-4} ft/day, based on the calculated hydraulic gradient for September 2024 of 0.028 ft/ft.

3.2 Monitoring Data (Analytical Results)

Analytical results for the detection monitoring results for the September 2024 monitoring event are shown in Table 1 through Table 7. Time series of the parameters are included as Appendix C.

3.3 Comparative Statistical Analysis

Comparative statistical analysis was conducted using the previously approved results of the baseline update conducted prior to the Q1 2022 detection monitoring event (GAUSA 2022b) following guidance provided by the USEPA (2009). The results of the comparative statistical analysis are summarized below and presented in Table 9 through Table 15. A full description of the steps taken for the comparative statistical analysis can be found in the Groundwater Monitoring Statistical Methods Certification (GAI 2017a). Charts for the comparative statistical analysis are included as Appendix D.

3.3.1 Definitions

The following definitions are used in discussion of the comparative statistical analysis:

- Statistically significant increase (SSI)—defined as a result that exceeds the statistical limit established by the baseline statistical analysis, which has been verified by confirmatory re-sampling and analysis.
- Elevated cumulative summation (CUSUM)—occurs when the calculated CUSUM value is greater than the Shewhart-CUSUM limit established by the baseline statistical analysis, but the analytical result does not exceed the Shewhart-CUSUM limit. An elevated CUSUM is an indication that concentrations are gradually changing and that analytical results may exceed the Shewhart-CUSUM limit in the future. In the case of two-tailed analysis for field pH, an elevated CUSUM can also occur below the lower Shewhart-CUSUM statistical limit.
- Potential exceedance—defined as an initial elevated CUSUM or an analytical result that exceeds the Shewhart-CUSUM limit or non-parametric prediction limit established by the baseline statistical analysis. Confirmatory re-sampling will determine if a potential exceedance is a false positive or a verified SSI. Non-detect results that exceed either the Shewhart-CUSUM limit or the non-parametric prediction limit are not considered potential exceedances.
- False positive—defined as an analytical result or elevated CUSUM that exceed the associated statistical limit, but can be clearly attributed to laboratory error, changes in analytical precision, or is invalidated through confirmatory re-sampling. False positives are not used in calculation of any subsequent CUSUM values.
- Confirmatory re-sampling—designated as the next sampling event.
- Verified exceedances (verified SSIs)—interpreted as two consecutive samples exceeding the statistical limit (the original sample and the confirmatory re-sample, or two consecutive elevated CUSUMs, or a combination of a sample result and an elevated CUSUM in either order) for the same parameter at the same well.

3.3.2 Potential Exceedances

The following potential exceedances were identified for the Q3 2024 sampling event:

- AP4-MW3, field pH low elevated CUSUM
- AP4-MW4, field pH low elevated CUSUM
- AP4-MW7, field pH low elevated CUSUM

Confirmatory re-samples will be collected to determine whether the results are false-positives or verified SSIs.

3.3.3 False Positives

The following results that were identified as potential exceedances for the Q1 2024 sampling event were determined to be false positives following confirmatory re-sampling:

- AP4-MW5, sulfate
- AP4-MW7, chloride

Additionally, during review of the Q3 2024 statistics, an oversight was found in the tables for the Q1 2024 event where field pH at AP4-MW6 should have been identified as a potential exceedance with a low elevated CUSUM. This result was also found to be a false positive through confirmatory re-sampling. Both the Q1 and Q3 results are shown in Table 14 for AP4-MW6 for comparative purposes.

3.3.4 Verified Exceedances

No verified SSIs were identified for the Q3 2024 detection monitoring sampling event.

3.4 **Program Transitions**

Beginning in Q3 2017, the groundwater monitoring program at Sheldon Station transitioned from the initial baseline period to detection monitoring. During the initial baseline period, eight independent samples from each well within the program were collected and analyzed for the constituents listed in Appendix III and Appendix IV of the federal CCR Rule prior to October 17, 2017, as specified in 40 CFR 257.94(b).

3.4.1 Detection Monitoring

Samples for the detection monitoring program are collected on a semi-annual basis, beginning with the sample collected in September 2017. NPPD plans to continue to collect semi-annual samples under the detection monitoring program in the first and third quarters of 2025.

3.4.2 Alternative Source Demonstrations

Resulting from the verified SSI for sulfate at AP4-MW1 (U) verified during the Q1 2022 detection monitoring event, NPPD and Golder pursued an alternative source demonstration (ASD; GAUSA 2022c). As an upgradient background location, groundwater from AP4-MW1 flows north towards the landfill, as shown in Figure 1. As such, AP4 is not considered the source of the verified SSI at AP4-MW1. A review of the relevant site conditions and associated information was completed within 90 days of identification of the verified SSI and presented as an ASD. Following completion of the successful ASD and concurrence of NDEE (NDEE 2022), Sheldon Station's AP4 remains in detection monitoring.

3.4.3 Assessment Monitoring

The current groundwater monitoring program at Sheldon Station is not in assessment monitoring. Assessment monitoring has not been triggered as described in the permitted SAP (GAUSA 2022a).

3.4.4 Corrective Measures and Assessment

The current groundwater monitoring program at Sheldon Station does not indicate the need for corrective measures. An assessment of corrective measures has not been required. No alternative source demonstration stemming from statistically significant levels of assessment monitoring Appendix IV parameters identified as part of an assessment monitoring program has been made. No actions are required at this time.

4.0 RECOMMENDATIONS AND CLOSING

This report presents the results from the detection monitoring sampling event that occurred September 3, 2024, along with the associated comparative statistical analysis.

As described in the Groundwater Monitoring System Certification (GAI 2017b) and the Groundwater Monitoring Statistical Methods Certification (GAI 2017a), the groundwater monitoring and analytical procedures meet the general requirements of the CCR Rule and the permitted SAP (GAUSA 2022a), and modification to the monitoring network and sampling program are not recommended at this time.

Signature Page

WSP USA Inc.

Bittay

Brittany Bradley Associate Consultant

Jacob J. Sauer, PE Vice President

BCB/ELH/JJS/af

In C. Muto

Erin L. Hunter, PhD, PE *Lead Consultant*

https://wsponline.sharepoint.com/:w:/r/Sites/Global-NPPD2023GWQualityRep/Project%20Files/6%20Deliverables/GLA21457062.5798/002-RPT-Q3_2024_Semi-Ann_GW_Rpt/Rev0/GLA21457062.5798-002-RPT-0-Q3_2024_Semi-Ann_GW_Rpt_25OCT24.docx

5.0 **REFERENCES**

- GAI (Golder Associates, Inc.). 2017a. Groundwater Monitoring Statistical Methods Certification, Sheldon Station Ash Landfill No. 4. October 11, 2017.
- GAI. 2017b. Coal Combustion Residuals Landfill Groundwater Monitoring System Certification. October 11, 2017.
- GAUSA (Golder Associates USA Inc.). 2022a. Sampling and Analysis Plan Permit No. NE0204285, Sheldon Station Ash Landfill No. 4. March 1, 2022.
- GAUSA. 2022b. Baseline Update for Groundwater Quality Monitoring at Nebraska Public Power District's Sheldon Station. April 6, 2022.
- GAUSA. 2022c. Alternate Source Demonstration for Sulfate at Upgradient Location AP4-MW1. July 20, 2022.
- NDEE (Nebraska Department of Environment and Energy). 2022. Response to MW-1 Sulfate Alternate Source Demonstration (ASD). Letter from Wade Gregson (NDEE) to Brian J. Kozisek (NPPD). August 19, 2022.
- USEPA (United States Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. Office of Resource Conservation and Recovery. EPA-R-09-007. March 2009.
- USEPA. 2015. Code of Federal Regulations Title 40 Part 257: Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities. April 17, 2015.

Tables

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 1: Data Summary Table - AP4-MW1

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Background	d Collection	l				I	I	I	I	ļ	Detecti	ion Monito	ring ¹	1 1		I	I	I	
Appendix III																								
Boron, Total	mg/L	0.0784	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.130	< 0.100	< 0.100
Calcium, Total	mg/L	89.8	90.4	95.1	103	93.0	88.3	103	92.3	91.0	99.6	82.4	94.2	93.7	85.3	94.0	96.2	93.7	92.6	101	85.2	99.4	79.5	92.8
Chloride	mg/L	22.5	7.05	5.57	6.43	6.24	11	5.37	7.48	7.47	6.52	5.61	6.15	1.18	6.74	7.27	7.13	7.17	6.81	7.59	7.19	7.33	7.57	7.54
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22	1.2	0.846	0.723	1.07	0.194	0.552	0.816	0.856	0.615	0.611	0.524	0.811	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.95	6.94	7.46	7.26	7.19	7.19	7.32	7.19	7.17	7.36	7.23	7.59	7.60	7.37	7.16	6.8	7.14	7.11	7.20	7.04	6.95	7.10	7.00
Sulfate	mg/L	22.8	23.7	22.2	22.2	22.8	24.5	20.6	21.7	24.4	23.4	19.6	23.2	4.79	25.7	25.3	25.2	27.2	26.2	22.7	23.2	27.3	23.8	22.3
Total Dissolved Solids	mg/L	440	462	428	430	462	464	484	520	464	408	406	416	392	422	396	388	388	396	368	362	400	402	430
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.23	0.258	0.221	0.199	0.193	0.209	0.269	0.231															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.598	0.923	0.796	0.604	< 0.500	0.656	1.22															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0508	0.0513	0.0504	0.0505	0.0506	0.0546	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00725	0.00823	0.00724	0.00647	0.00656	0.00655	0.00883	0.00739															
Radium-226	pCi/L	0.257 ± 0.0866	0.293 ± 0.104	0.35 ± 0.097	0.314 ± 0.0878	0.417 ± 0.111	0.527 ± 0.33	0.208 ± 0.0918	0.373 ± 0.125															
Radium-228	pCi/L	2.14 ± 0.411	2.68 ± 0.446	1.49 ± 0.319	1.19 ± 0.318	1.26 ± 0.383	2.09 ± 0.453	2.02 ± 0.392	1.88 ± 0.383															
Radium-226 + Radium-228	pCi/L	2.397 ± 0.42	2.973 ± 0.458	1.84 ± 0.333	1.51 ± 0.33	1.67 ± 0.399	2.62 ± 0.561	2.22 ± 0.403	2.25 ± 0.403															
Selenium, Total	mg/L	0.00901	0.0123	0.0101	0.00873	0.00826	0.00816	0.0114	0.00999															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 2: Data Summary Table - AP4-MW2

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units			1	Background	Collection	1				1	1	1			Detection I	Monitoring	1						
Appendix III																								
Boron, Total	mg/L	0.0831	< 0.500	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.400	< 0.100	< 0.100	0.111	< 0.100	< 0.100
Calcium, Total	mg/L	335	321	294	320	289	286	342	278	293	331	263	297	291	239	292	296	288	295	336	269	309	290	306
Chloride	mg/L	89.9	93.3	83.6	94.2	92.7	92.5	87	88.6	88.6	94.3	92	87.6	88.8	93.9	106.0	113.0	111	115	99.6	106	111	99.9	99.8
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935	0.677	0.687	< 0.500	0.612	0.702	0.715	< 0.500	< 0.500	0.533	< 0.500	< 0.500	0.544	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.98	6.99	7.37	7.2	7.16	7.13	7.25	7.18	7.16	7.26	7.19	7.44	7.60	7.33	7.09	7.05	7.08	7.09	7.1	6.97	6.97	6.97	6.97
Sulfate	mg/L	884	888	797	804	901	842	774	797	894	879 E	827	923	855	857	874	876	882	933	906	874	1120	873	944
Total Dissolved Solids	mg/L	1720	1840	1700	1830	1900	1790	2360	1780	2210	1650	1680	1730	1570	1740	1620	1680	1620	1560	1680	1380	1750	1610	1630
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.0115	0.0117	0.0107	0.0102	0.00996	0.012	0.0138	0.0103															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	3.1	0.596	0.666	0.558	< 0.500	< 0.500	0.935															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0811	0.0754	0.0699	0.0681	0.0523	0.0705	0.0661	0.0694															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00543	0.00555	0.00526	0.00533	0.00519	0.00494	0.00627	0.00491															
Radium-226	pCi/L	0.258 ± 0.0937	0.241 ± 0.0886	0.28 ± 0.0846	0.312 ± 0.0834	0.334 ± 0.097	0.778 ± 0.403	0.25 ± 0.103	0.188 ± 0.0925															
Radium-228	pCi/L	2.02 ± 0.457	2.53 ± 0.497	2.07 ± 0.384	2.2 ± 0.449	2.41 ± 0.467	2.49 ± 0.485	2.01 ± 0.41	2.01 ± 0.405															
Radium-226 + Radium-228	pCi/L	2.278 ± 0.467	2.771 ± 0.505	2.35 ± 0.394	2.51 ± 0.456	2.74 ± 0.477	3.27 ± 0.631	2.26 ± 0.423	2.2 ± 0.415															
Selenium, Total	mg/L	0.714	0.697	0.634	0.706	0.628	0.628	0.779	0.657															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001														['	

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: piccuries per liter

E: Result exceeded calibration range.

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 3: Data Summary Table - AP4-MW3

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgrour	d Collection		1	1						1	etection N	lonitorina	1						
Appendix III																								
Boron, Total	mg/L	0.0687	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	82.4	85.9	89.8	88.5	87.5	85	95.8	86.1	83.7	92.3	74.7	88.5	87.8	81.1	84.1	88.4	88.3	84.3	94.5	78.8	88.5	78.1	84.9
Chloride	mg/L	12.4	< 5.00	< 5.00	< 5.00	6.94	5.4	< 5.00	5.18	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82	1.2	1.29	1.05	1.29	1.24	1.24	1.34	1.33	0.914	0.972	0.717	1.23	1.14	1.27	1.21
Field pH	pH units	7.15	7.21	7.60	7.38	7.30	7.34	7.39	7.40	7.28	7.48	7.43	7.69	7.60	7.56	7.3	6.55	7.36	7.27	7.40	7.14	7.13	7.16	7.08
Sulfate	mg/L	33.2	24.4	25.2	34.6	31.2	29	20.6	21.7	33.2	30.7	20	35	32.3	30.3	26.7	22.9	29.2	22.3	21	19.3	17.7	20.0	19.1
Total Dissolved Solids	mg/L	418	460	390	420	488	430	428	442	494	404	374	426	378	374	378	348	344	354	326	318	360	360	340
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.218	0.235	0.225	0.222	0.206	0.232	0.271	0.238															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.975	1.08	1.1	0.513	0.884	1.04	1.82															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0502	< 0.0500	0.0519	< 0.05	< 0.05	0.0538	0.0520	0.0547															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00922	0.0101	0.00992	0.00873	0.00928	0.00978	0.0116	0.00983															
Radium-226	pCi/L	0.401 ± 0.101	0.389 ± 0.106	0.384 ± 0.103	0.501 ± 0.104	0.4 ± 0.102	0.426 ± 0.292	0.318 ± 0.108	0.188 ± 0.0889															
Radium-228	pCi/L	3.69 ± 0.576	2.87 ± 0.491	2.91 ± 0.463	3.42 ± 0.547	2.65 ± 0.477	3.19 ± 0.561	2.35 ± 0.432	2.26 ± 0.422															
Radium-226 + Radium-228	pCi/L	4.091 ± 0.474	3.259 ± 0.502	3.3 ± 0.474	3.92 ± 0.557	3.04 ± 0.487	3.62 ± 0.632	2.67 ± 0.445	2.45 ± 0.431															
Selenium, Total	mg/L	0.0138	0.0164	0.0165	0.0145	0.0152	0.0154	0.0201	0.0191															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed mg/L: milligrams per liter pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 4: Data Summary Table - AP4-MW4

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgro	ound Collection	1									Detect	tion Monit	oring ¹						/
Appendix III																								
Boron, Total	mg/L	0.0674	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	128	123	103	115	111	105	132	95.4	108	109	97.1	100	112	91.9	104	112	109	102	119	100	117	108	117
Chloride	mg/L	13	8.99	< 5.00	6.71	8.55	7.77	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33	1.18	1.2	0.796	1.17	1.12	0.983	1.110	0.989	0.900	0.837	0.626	1.03	< 1.00	1.09	1.06
Field pH	pH unit	s 7.02	7.17	7.40	7.25	7.15	7.22	7.23	7.31	7.23	7.32	7.29	7.60	7.75	7.43	7.22	7.23	7.17	7.13	7.3	7.02	6.97	7.05	6.99
Sulfate	mg/L	82.8	127	62.6	89.5	99.6	110	123	59.4	53.5	100	81.9	85.7	109	114	95.5	97.5	87.3	84.7	76.1	96.7	96.5	130	102
Total Dissolved Solids	mg/L	506	590	476	518	582	556	576	666	498	530	466	486	490	516	510	466	452	452	436	460	504	526	500
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.151	0.14	0.168	0.128	0.131	0.177	0.123	0.158															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	0.987	0.946	0.949	< 0.500	0.732	0.786	1.33															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00509	0.0054	0.00493	0.00443	0.00481	0.00466	0.00642	0.00483															
Radium-226	pCi/L	0.45 ± 0.107	0.451 ± 0.124	0.362 ± 0.104	0.471 ± 0.0996	0.36 ± 0.0976	< 0.481 U ± 0.277	0.327 ± 0.112	0.185 ± 0.0900)														
Radium-228	pCi/L	2.78 ± 0.489	1.59 ± 0.370	1.86 ± 0.360	2.62 ± 0.468	2.05 ± 0.452	1.39 ± 0.384	1.93 ± 0.397	1.9 ± 0.388															
Radium-226 + Radium-2	228 pCi/L	3.23 ± 0.501	2.041 ± 0.390	2.23 ± 0.375	3.09 ± 0.478	2.41 ± 0.462	1.56 ± 0.474	2.25 ± 0.413	2.08 ± 0.399															
Selenium, Total	mg/L	0.0259	0.0137	0.0181	0.0132	0.0198	0.0119	0.0104	0.013															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend:

--- Not analyzed

mg/L: milligrams per liter

pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 5: Data Summary Table - AP4-MW5

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgrou	nd Collection										Detecti	on Monito	ring ¹						
Appendix III																								
Boron, Total	mg/L	0.0934	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	0.133	< 0.100	< 0.100	< 0.400	< 0.100	0.109	0.125	< 0.100	0.109
Calcium, Total	mg/L	358	520	439	460	523	517	608	310	488	537	146	541	504	363	579	210	177	600	178	471	468	500	244
Chloride	mg/L	8.98	8.99	5.77	6.97	7.98	10	5.69	6.76	< 5.00	6.59	< 5.00	5.1	5.43	6.03	6.19	5.56	< 5.00	5.71	< 5.00	6.28	6.11	6.52	6.31
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27	0.658	0.601	< 0.500	0.664	0.61	< 0.500	< 0.500	0.53	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
Field pH	pH units	6.75	7.05	7.08	6.89	6.81	6.82	6.90	6.90	6.82	6.97	7.27	7.23	7.26	7.06	6.82	6.94	7.04	6.67	7.1	6.63	6.64	6.62	6.88
Sulfate	mg/L	1420	1480	969	1410	1620	1570	1350	740	784	1630	468	1470	1370	1540	1580	678	592	1670	426	1590	1550	1680	719
Total Dissolved Solids	mg/L	2540	2740	1950	2620	2860	2920	3010	1490	1710	2690	1020	2390	2210	2500	2740 H	1180	980	2450	750	2350	2660	2510	1270
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.017	0.00903	0.0117	0.00926	0.00843	0.00795	0.00756	0.0124															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	1.27															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	0.0948	0.1330	0.1210	0.1280	0.1480	0.1680	0.1660	0.1080															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00444	0.00329	0.0035	0.00274	0.00263	0.00284	0.00373	0.00344															
Radium-226	pCi/L	0.167 ± 0.0816	0.156 ± 0.103	0.267 ± 0.084	0.176 ± 0.0734	0.217 ± 0.0891	< 0.397 U ± 0.253	0.105 ± 0.068	< 0.109 U ± 0.058															
Radium-228	pCi/L	2.08 ± 0.432	< 0.471 U ± 0.297	2 ± 0.392	1.02 ± 0.317	1.36 ± 0.373	0.972 ± 0.383	0.934 ± 0.294	< 0.361 U ± 0.234															
Radium-226 + Radium-228	pCi/L	2.247 ± 0.44	0.505 ± 0.314	2.27 ± 0.40	1.19 ± 0.325	1.57 ± 0.384	1.21 ± 0.459	1.04 ± 0.302	< 0.361 U ± 0.241															
Selenium, Total	mg/L	0.0563	< 0.00500	0.0286	0.0236	0.00561	< 0.00500	< 0.00500	0.0562															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

H: Sample was prepped or analyzed beyond the specified holding time.

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 6: Data Summary Table - AP4-MW6

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units			1	Background	Collection	1	1								Detecti	on Monito	ring ¹						
Appendix III																								
Boron, Total	mg/L	0.0862	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	103	105	101	104	106	101	118	94.1	106	106	92.7	90.6	101	99.2	99.5	105	99.9	99	116	97.2	112	99.6	102
Chloride	mg/L	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	5.28	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
Fluoride	mg/L	0.87	0.85	1.37	1.61	1.21	1.45	1.35	1.62	1.62	2.19	1.31	1.5	1.46	2.08	1.82	1.53	1.20	1.35	102	1.45	1.28	1.44	1.54
Field pH	pH units	6.92	7.21	7.46	7.19	7.11	7.21	7.35	7.33	7.16	7.40	7.32	7.63	7.22	7.49	7.20	7.16	7.17	7.15	7.20	7.04	6.91	7.07	6.97
Sulfate	mg/L	58.5	96.6	51.3	50.7	70.6	69.1	59.3	53.4	50	60.5	46.7	57.7	65.2	75.5	51.8	58.4	61.8	53.8	52.3	59.8	65.9	66.3	53
Total Dissolved Solids	mg/L	468	506	506	436	514	530	584	550	498	432	396	440	458	422	454	414	414	402	382	394	428	438	428
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.0725	0.0611	0.0622	0.0589	0.0605	0.0629	0.0672	0.0568															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	0.869	0.845	1.37	1.61	1.21	1.45	1.35	1.62															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00329	0.0039	0.00393	0.00344	0.00281	0.00397	0.00455	0.00411															
Radium-226	pCi/L	0.287 ± 0.0872	0.232 ± 0.0917	0.227 ± 0.0771	0.261 ± 0.073	0.361 ± 0.113	0.545 ± 0.358	0.163 ± 0.0907	0.17 ± 0.0861															
Radium-228	pCi/L	0.983 ± 0.307	0.766 ± 0.31	0.672 ± 0.243	0.699 ± 0.279	1.27 ± 0.439	0.735 ± 0.378	0.451 ± 0.245	0.752 ± 0.244															
Radium-226 + Radium-228	pCi/L	1.27 ± 0.319	0.998 ± 0.323	0.899 ± 0.254	0.961 ± 0.288	1.63 ± 0.454	1.28 ± 0.521	0.614 ± 0.261	0.921 ± 0.259															
Selenium, Total	mg/L	0.0103	0.00883	0.0109	0.00974	0.00984	0.0098	0.0112	0.0104															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed mg/L: milligrams per liter

pCi/L: picocuries per liter

NOTES:

NEBRASKA PUBLIC POWER DISTRICT SHELDON STATION

Table 7: Data Summary Table - AP4-MW7

Analytes		9/15/2015	11/23/2015	3/15/2016	5/18/2016	8/9/2016	11/9/2016	3/7/2017	5/16/2017	9/19/2017	3/21/2018	9/11/2018	3/20/2019	9/17/2019	3/8/2020	9/1/2020	3/9/2021	8/25/2021	3/2/2022	8/23/2022	3/6/2023	8/29/2023	2/26/2024	9/3/2024
	Units				Backgroun	nd Collection										Detec	tion Monit	toring ¹	11					
Appendix III																								
Boron, Total	mg/L	0.0758	< 0.150	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Calcium, Total	mg/L	67.7	68.7	72	66.2	69.4	66.9	79	67.6	67.5	64.3	65.5	66.4	69.4	66.6	66.3	71.7	70.5	68.2	78.2	64.8	75.7	65.9	68.5
Chloride	mg/L	16.1	11.8	11.4	11.2	13	11.7	10.6	12.9	13.3	12.5	12.1	12.9	11.3	11.8	9.89	11.4	9.65	11.4	13.3	13.9	16.8	16.0	14.7
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02	< 0.500	0.52	< 0.500	< 0.500	0.589	< 0.500	0.513	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 1.00	< 1.00	< 1.00
Field pH	pH units	7.20	7.45	7.65	7.39	7.40	7.48	7.57	7.52	7.46	7.56	7.54	7.94	7.15	7.70	7.39	7.34	7.37	7.36	7.30	7.23	7.11	7.26	7.17
Sulfate	mg/L	46	39.8	40.4	43.3	40.7	45.6	36.8	35.2	42.7	41.6	34.5	44.2	51.1	49.9	40.6	47.7	50.5	47	40.8	42.1	40.1	34.6	29.6
Total Dissolved Solids	mg/L	546	548	516	558	588	616	534	538	598	476	480	536	504	510	404	488	488	490	490	478	516	466	438
Appendix IV																								
Antimony, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Arsenic, Total	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002															
Barium, Total	mg/L	0.165	0.161	0.154	0.137	0.146	0.159	0.177	0.159															
Beryllium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															
Cadmium, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Chromium, Total	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005															
Cobalt, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Fluoride	mg/L	< 0.500	< 0.500	0.738	< 0.500	< 0.500	< 0.500	< 0.500	1.02															
Lead, Total	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005															
Lithium, Total	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05															
Mercury, Total	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002															
Molybdenum, Total	mg/L	0.00841	0.00827	0.00823	0.0069	0.00785	0.00788	0.00955	0.00768															
Radium-226	pCi/L	0.189 ± 0.0807	0.206 ± 0.865	0.277 ± 0.0928	0.25 ± 0.0781	0.29 ± 0.0907	< 0.404 U ± 0.271	0.357 ± 0.112	0.227 ± 0.092															
Radium-228	pCi/L	1.2 ± 0.313	1.92 ± 0.396	1.58 ± 0.322	1.52 ± 0.342	1.60 ± 0.415	2.52 ± 0.481	1.91 ± 0.372	1.67 ± 0.358															
Radium-226 + Radium-228	pCi/L	1.389 ± 0.323	2.126 ± 0.405	1.86 ± 0.335	1.77 ± 0.350	1.89 ± 0.425	2.83 ± 0.552	2.27 ± 0.389	1.89 ± 0.369															
Selenium, Total	mg/L	0.00812	0.00846	0.00898	0.00834	0.00926	0.00764	0.00995	0.0103															
Thallium, Total	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001															

Legend: --- Not analyzed

mg/L: milligrams per liter

pCi/L: picocuries per liter

U: Result is less than the sample detection limit (varies by sample for radiological results).

NOTES:

Table 8: Sheldon Station Ash Landfill No. 4 Groundwater Levels (ft amsl)

Sample Beried	Upgradie	ent Wells			Downgradient Wells		
Sample Period	AP4-MW1	AP4-MW2	AP4-MW3	AP4-MW4	AP4-MW5	AP4-MW6	AP4-MW7
MP Elev.	1425.95	1445.03	1411.72	1396.10	1403.10	1386.61	1424.29
QTR-2002-4	1410.90	1422.78	1392.14	1375.99	1385.78	1374.15	1401.53
QTR-2003-1	1409.36	1421.35	1390.20	1374.01	1383.07	1374.06	1399.28
QTR-2003-2	1412.99	1421.11	1396.11	1376.52	1387.68	1376.90	1398.78
QTR-2003-3	1411.22	1421.87	1390.91	1372.66	1382.35	1369.46	1401.34
QTR-2003-4	1410.02	1422.24	1390.31	1373.48	1382.30	1369.10	1401.38
QTR-2004-1	1411.81	1420.78	1393.01	1377.92	1384.12	1377.59	1398.98
QTR-2004-2	1412.04	1420.72	1394.77	1375.64	1383.75	1374.83	1400.70
QTR-2004-3	1411.24	1421.22	1393.89	1375.55	1384.18	1373.85	1408.14
QTR-2004-4	1409.40	1421.39	1391.65	1373.40	1381.88	1374.65	1407.23
QTR-2005-1	1409.32	1420.12	1390.66	1372.78	1381.29	1374.62	1401.20
QTR-2005-2	1410.36	1419.77	1388.86	1372.63	1381.27	1374.55	1399.82
QTR-2005-3							
QTR-2005-4	1407.83	1419.58	1387.67	1372.52	1380.80	1369.44	1399.32
QTR-2006-1	1406.35	1418.91	1387.02	1372 42	1380 15	1371 76	1397 99
OTR-2006-2	1408.37	1418 43	1387.52	1372.42	1383.05	1372.36	1397.48
QTR-2006-3	1403.26	1417 13	1386.38	1372.30	1379.83	1370 22	1399 99
OTR-2006-4	1404.91	1/10/2	1386 32	1372.25	1380 51	1360.00	1300.80
QTR-2000-4	1407.01	1413.42	1000.02	1072.20	1000.01	1003.00	1099.09
QTR-2007-1	1407.21	1417.13	1390.63	1372.89	1382.85	1374.67	1397.74
QTR-2007-3	1409.61	1417.42	1391.60	13/3.85	1382.19	1370.84	1409.74
QTR-2008-2	1415.33	1417.33	1406.98	1385.69	1395.04	1379.15	1414.16
QTR-2008-3	1412.64	1418.64	1393.61	1376.05	1385.14	1373.43	1413.10
QTR-2009-2	1409.86	1417.98	1390.72	1374.15	1381.58	1374.49	1403.78
QTR-2009-3	1408.87	1417.88	1389.01	1372.47	1380.60	1370.31	1407.03
QTR-2010-2	1413.98	1418.11	1405.12	1381.85	1390.80	1375.51	1414.59
QTR-2010-3	1411.22	1419.23	1392.72	1374.81	1383.50	1374.39	1413.39
QTR-2011-2	1409.32	1418.12	1389.92	1374.80	1382.48	1374.55	1403.83
QTR-2011-3	1411.24	1418.58	1391.87	1373.60	1382.88	1373.56	1411.18
QTR-2012-2	1412.85	1418.13	1399.77	1377.74	1388.74	1375.41	1413.29
QTR-2012-3	1408.70	1418.58	1390.03	1372.72	1381.35	1369.47	1410.77
QTR-2013-2	1411.47	1416.93	1391.01	1375.34	1388.23	1375.31	1402.57
QTR-2013-4	1410.46	1417.32	1391.21	1373.05	1382.79	1370.11	1407.27
QTR-2014-2	1407.80	1416.98	1387.42	1372.03	1383.19	1374.23	1400.05
QTR-2014-4	1407.74	1417.08	1387.30	1372.10	1381.27	1371.75	1404.99
QTR-2015-2	1412.00	1415.13	1405.17	1379.63	1394.50	1375.75	1409.78
QTR-2015-3	1412.05	1418.38	1393.87	1376.77	1386.49	1371.86	1412.67
QTR-2015-4	1410.50	1418.89	1391.46	1374.49	1383.76	1372.41	1408.79
QTR-2016-1	1412.60	1420.38	1394.97	1377.65	1387.59	1374.66	1405.38
QTR-2016-2	1414.94	1418.83	1406.92	1384.72	1395.85	1376.79	1410.62
QTR-2016-3	1412.06	1419.51	1393.22	1375.65	1386.20	1373.11	1414.29
QTR-2016-4	1410.10	1419.93	1390.81	1373.60	1382.98	1372.41	1408.39
QTR-2017-1	1408.24	1419.54	1389.29	1372.83	1381.40	1373.83	1403.49
QTR-2017-2	1410.15	1419.00	1389.52	1373.35	1386.96	1373.96	1402.41
QTR-2017-3	1410.40	1419.35	1392.04	1372.70	1383.00	1372.12	1409.31
QTR-2018-1	1408.01	1418.76	1389.65	1372.37	1381.38	1374.21	1402.92
QTR-2018-3	1410.46	1417.88	1397.84	1375.90	1389.87	1374.85	1410.27
QTR-2019-1	1413.80	1418.53	1400.72	1383.19	1391.10	1377.89	1411.27
QTR-2019-3	1412.07	1422.34	1399.14	1377.58	1390.40	1374.46	1415.12
QTR-2020-1	1414.38	1424.75	1399.62	1378.73	1390.27	1374.60	1411.49
QTR-2020-2	1414.67	1427.03	1403.73	1380.90	1394.55	1375.70	1415.83
QTR-2020-3	1411.10	1428.23	1394.10	1375.29	1387.19	1373.30	1414.78
QTR-2021-1	1410.62	1425.54	1390.69	1375.14	1386.42	1374.19	1405.72
QTR-2021-3	1410.46	1426.36	1392.03	1373.93	1384.00	1371.92	1412.38
QTR-2022-1	1408.46	1424.04	1389.13	1372.69	1381.70	1373.66	1404.24
QTR-2022-3	1408.65	1421.92	1390.69	1371.45	1379.75	1370.26	1408.57
QTR-2023-1	1405.85	1419.93	1386.32	1370.00	1378.27	1369.80	1400.39
QTR-2023-3	1405.35	1418.68	1386.93	1370.75	1379.99	1370.86	1398.38
QTR-2024-1	1405.43	1418.98	1387.26	1372.18	1379.84	1370.80	1397.63
QTR-2024-3	1405.25	1417.86	1385.97	1371.45	1379.25	1369.31	1398.27
	1100.20		1000.01		1010.20	1000.01	1000.21
Mean	1410.09	1419.86	1392.59	1374.89	1384.51	1373.29	1405 84
SD	2 67	2 67	5.35	3.36	4.31	2 39	5 75
Maximum	1415.33	1428 23	1406 98	1385 69	1395 85	1379 15	1415 83
Minimum	1403.26	1415.13	1385.97	1370.00	1378.27	1369.10	1397.48
Range	12.07	13.10	21.01	15.69	17.58	10.05	18.35
	Hydraulic	Gradient	0.03				

MP = Measuring Point

MSL = Mean Sea Level (measured to nearest 0.01')

Table 9: Comparative Statistics - AP4-MW1 (Upgradient)

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	115.1	92.8	93.2	Yes
Chloride	mg/L	NP-PL	11.00	7.54		Yes
Fluoride	mg/L	CUSUM	1.95	< 1.00	0.73	Yes
pH, Field	pH units	CUSUM	6.49, 8.00	7.00	7.05, 7.25	Yes
Sulfate	mg/L	CUSUM	31.6	22.3	23.6	Yes
Total Dissolved Solids	mg/L	CUSUM	584	430	434	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 10: Comparative Statistics - AP4-MW2 (Upgradient)

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitorin g Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/2024	
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	402	306	297	Yes
Chloride	mg/L	NP-PL	113	99.8		Yes
Fluoride	mg/L	NP-PL	0.94	< 1.00		Tes - See
pH, Field	pH units	CUSUM	6.55, 7.85	6.97	6.84, 7.20	Yes
Sulfate	mg/L	CUSUM	1027	944	901	Yes
Total Dissolved Solids	mg/L	NP-PL	2360	1630		Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

Table 11: Comparative Statistics - AP4-MW3

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/202	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	105.2	84.9	86.5	Yes
Chloride	mg/L	NP-PL	12.40	< 5.00		Yes
Fluoride	mg/L	CUSUM	2.48	1.21	1.09	Yes
nH Field	nH unite	CUSUM	6 81 7 00	7.08	6 81 7 40	No - Potential
pi î, Field	priums	C030M	0.01, 7.99	7.00	0.01, 7.40	Exceedance
Sulfate	mg/L	CUSUM	48.2	19.1	28.3	Yes
Total Dissolved Solids	mg/L	CUSUM	567	340	435	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart
Table 12: Comparative Statistics - AP4-MW4

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/202	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	153	117	109	Yes
Chloride	mg/L	NP-PL	8.99	< 5.00		Yes
Fluoride	mg/L	CUSUM	1.67	1.06	0.97	Yes
pH. Field	pH units	CUSUM	6.73. 7.79	6.99	6.68. 7.26	No - Potential
	'		, -		, -	Exceedance
Sulfate	mg/L	CUSUM	180	102	95	Yes
Total Dissolved Solids	mg/L	CUSUM	746	500	523	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 13:	Comparative Statistics	- AP4-MW5
-----------	-------------------------------	-----------

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/2024	ļ
Boron, Total	mg/L	NP-PL	0.200	0.109		Yes
Calcium, Total	mg/L	CUSUM	798	244	450	Yes
Chloride	mg/L	CUSUM	15.58	6.31	6.37	Yes
Fluoride	mg/L	NP-PL	0.664	< 1.00		Yes - See Text
pH, Field	pH units	CUSUM	6.32, 7.63	6.88	6.49, 6.98	Yes
Sulfate	mg/L	NP-PL	1630	719		Yes - Prior Result was a False Positive
Total Dissolved Solids	mg/L	CUSUM	4040	1270	2308	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

See discussion of non-detect reporting for compliance results in the text.

October 2024

Table 14: Comparative Statistics - AP4-MW6

		Statistical Method	Statistical Limit	Q1 2024 Detection Monitorin g Result	Q1 2024 CUSUM Value	Q1 2024 - Within Limit?	Q3 2024 Detection Monitorin g Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				2/26/202	4		9/3/202	24
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes	< 0.100		Yes
Calcium, Total	mg/L	CUSUM	127	99.6	101.9	Yes	102	102	Yes
Chloride	mg/L	NP-PL	5.28	< 5.00		Yes	< 5.00		Yes
Fluoride	mg/L	CUSUM	2.90	1.44	1.47	Yes	1.54	1.47	Yes
pH, Field	pH units	CUSUM	6.72, 7.82	7.07	6.69, 7.27	No - Potential Exceedance	6.97	3.73, 7.27	Yes - Prior Result was a False-Positive
Sulfate	mg/L	CUSUM	114.9	66.3	60.5	Yes	53	60.5	Yes
Total Dissolved Solids	mg/L	CUSUM	687	438	472	Yes	428	472	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Table 15: Comparative Statistics - AP4-MW7

		Statistical Method	Statistical Limit	Q3 2024 Detection Monitoring Result	Q3 2024 CUSUM Value	Q3 2024 - Within Limit?
Appendix III Analytes	Unit				9/3/202	4
Boron, Total	mg/L	NP-PL	0.200	< 0.100		Yes
Calcium, Total	mg/L	NP-PL	79.0	68.5		Yes
Chloride	mg/L	CUSUM	17.9	14.7	17.0	Yes - Prior Result was a False Positive
Fluoride	mg/L	NP-PL	1.02	< 1.00		Yes
pH, Field	pH units	CUSUM	6.87, 8.09	7.17	6.82, 7.17	No - Potential Exceedance
Sulfate	mg/L	CUSUM	63.2	29.6	43.0	Yes
Total Dissolved Solids	mg/L	CUSUM	732	438	525	Yes

NOTES:

NP-PL: Non-Parametric Prediction Limit

CUSUM: Parametric Shewhart-CUSUM Control Chart

Figures

MONITORING WELL GROUNDWATER ELEVATION (ft AMSL)

FIGURE 1 ASH LANDFILL NO. 4 GROUNDWATER CONTOURS SEPTEMBER 2024

FIGURE 2 Sheldon Station Ash Landfill No. 4 Groundwater Elevations

wsp

APPENDIX A

Analytical Report and Chain-of-Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Todd A. Chinn Nebraska Public Power District 4500 West Pella Road Hallam, Nebraska 68368 Generated 9/13/2024 9:45:32 AM

JOB DESCRIPTION

Sheldon Station Ash Landfill #4 CCR New Permit

JOB NUMBER

310-289701-1

EOL

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 9/13/2024 9:45:32 AM 1

5

12 13

Authorized for release by Conner Calhoun, Project Management Assistant I Conner.Calhoun@et.eurofinsus.com (319)277-2401

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	8
Definitions	16
QC Sample Results	17
QC Association	19
Chronicle	21
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	27

Job ID: 310-289701-1

Eurofins Cedar Falls

Job Narrative 310-289701-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/5/2024 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C.

HPLC/IC

Method 9056A_ORGFM_28D: The following samples were diluted due to the nature of the sample matrix: AP4-MW1 (310-289701-1), AP4-MW2 (310-289701-2), AP4-MW3 (310-289701-3), AP4-MW4 (310-289701-4), AP4-MW5 (310-289701-5), AP4-MW6 (310-289701-6), AP4-MW7 (310-289701-7) and AP4-MW Blind Duplicate (310-289701-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Job	ID:	310-2	28970	1-1
000		0.01		

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-289701-1	AP4-MW1	Ground Water	09/03/24 08:55	09/05/24 07:45
310-289701-2	AP4-MW2	Ground Water	09/03/24 09:32	09/05/24 07:45
310-289701-3	AP4-MW3	Ground Water	09/03/24 10:10	09/05/24 07:45
310-289701-4	AP4-MW4	Ground Water	09/03/24 11:00	09/05/24 07:45
310-289701-5	AP4-MW5	Ground Water	09/03/24 14:08	09/05/24 07:45
310-289701-6	AP4-MW6	Ground Water	09/03/24 13:01	09/05/24 07:45
310-289701-7	AP4-MW7	Ground Water	09/03/24 11:38	09/05/24 07:45
310-289701-8	AP4-MW Blind Duplicate	Ground Water	09/03/24 00:00	09/05/24 07:45

Detection Summary

RL

5.00

5.00

0.500

50.0

1.0

RL

5.00

20.0

0.500

250

1.0

RL

5.00

1.00

0.500

50.0

1.0

MDL Unit

mg/L

mg/L

mg/L

mg/L

SU

mg/L

mg/L

mg/L

mg/L

SU

mg/L

mg/L

mg/L

mg/L

SU

MDL Unit

MDL Unit

Result Qualifier

7.54

22.3

92.8

430

99.8

944

306

1630

19.1

1.21

84.9

340

7.3 HF

7.1 HF

Result Qualifier

7.2 HF

Result Qualifier

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW1

Client Sample ID: AP4-MW2

Analyte

Chloride

Sulfate

Calcium

Analyte

Chloride

Sulfate

Calcium

Analyte

Sulfate

Fluoride

Calcium

pН

pН

pН

Total Dissolved Solids

Total Dissolved Solids

Total Dissolved Solids

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Lab Sample ID: 310-289701-1

Lab Sample ID: 310-289701-2

Lab Sample ID: 310-289701-3

Dil Fac D Method

5

5

1

1

1

Dil Fac D

5

1

1

1

Dil Fac D

5

5

1

1

1

20

9056A

9056A

6020B

Method

9056A

9056A

6020B

Method

9056A

9056A

6020B

SM 2540C

SM 4500 H+ B

SM 2540C

SM 4500 H+ B

5
8
9

	9
	3

SM 2540C Total/NA SM 4500 H+ B Total/NA

Lab Sample ID: 310-289701-4

Lab Sample ID: 310-289701-5

Lab Sample ID: 310-289701-6

Client Sample ID: AP4-MW4

Client Sample ID: AP4-MW3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	102		5.00		mg/L	5	_	9056A	Total/NA
Fluoride	1.06		1.00		mg/L	5		9056A	Total/NA
Calcium	117		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	500		50.0		mg/L	1		SM 2540C	Total/NA
рН	7.2	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.31		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	719		20.0		mg/L	20		9056A	Total/NA
Boron	0.109		0.100		mg/L	1		6020B	Total/NA
Calcium	244		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	1270		250		mg/L	1		SM 2540C	Total/NA
рН	7.1	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	53.0		5.00		mg/L	5	_	9056A	Total/NA
Fluoride	1.54		1.00		mg/L	5		9056A	Total/NA
Calcium	102		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	428		50.0		mg/L	1		SM 2540C	Total/NA
pH	7.3	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	<u>D</u>	Method	Prep Type
Sulfate	29.6		5.00		mg/L	5		9056A	Total/NA
Calcium	68.5 438		0.500		mg/L	1		6020B	Total/NA
pH	7.4	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: AP4-MW Blind Duplicate

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	15.3		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	30.0		5.00		mg/L	5		9056A	Total/NA
Calcium	69.7		0.500		mg/L	1		6020B	Total/NA
Total Dissolved Solids	438		50.0		mg/L	1		SM 2540C	Total/NA
рН	7.4	HF	1.0		SU	1		SM 4500 H+ B	Total/NA

Lab Sample ID: 310-289701-7

Lab Sample ID: 310-289701-8

This Detection Summary does not include radiochemical test results.

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW1

Date Collected: 09/03/24 08:55 Date Received: 09/05/24 07:45

Lab Sample ID: 310-289701-1	
Matrix: Ground Water	

Method: SW846 9056A - Anions, Io	n Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.54		5.00		mg/L			09/11/24 15:44	5
Sulfate	22.3		5.00		mg/L			09/11/24 15:44	5
Fluoride	<1.00		1.00		mg/L			09/11/24 15:44	5
- Method: SW846 6020B - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 13:26	1
Calcium	92.8		0.500		mg/L		09/06/24 09:00	09/09/24 13:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	430		50.0		mg/L			09/05/24 19:56	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	1.0		SU			09/05/24 10:28	1

RL

5.00

20.0

1.00

RL

0.100

0.500

RL

250

RL

1.0

MDL Unit

MDL Unit

MDL Unit

RL Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

SU

D

D

D

D

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Method: SW846 9056A - Anions, Ion Chromatography

Method: SW846 6020B - Metals (ICP/MS)

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

7.1 HF

99.8

944

<1.00

<0.100

306

1630

Client Sample ID: AP4-MW2

Date Collected: 09/03/24 09:32 Date Received: 09/05/24 07:45

Analyte

Chloride

Sulfate

Fluoride

Analyte

Calcium

Analyte

Analyte

General Chemistry

pH (SM 4500 H+ B)

Total Dissolved Solids (SM 2540C)

Boron

Lab Sample ID: 310	-289701-2
Matrix: Gr	ound Water

Prepared

Prepared

09/06/24 09:00

09/06/24 09:00

Prepared

Prepared

Matrix: Ground Water										
Analyzed	Dil Fac	5								
09/11/24 16:19	5									
09/12/24 08:58	20	6								
09/11/24 16:19	5									
Analyzed	Dil Fac	0								
09/09/24 13:49	1	0								
09/09/24 13:49	1	9								
Analyzed	Dil Fac									
09/06/24 15:57	1									
Analyzed	Dil Fac									
09/05/24 10:35	1									

Job ID: 310-289701-1

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW3

Date Collected: 09/03/24 10:10 Date Received: 09/05/24 07:45

_ Method: SW846 9056A - Anions, lo	n Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			09/11/24 16:31	5
Sulfate	19.1		5.00		mg/L			09/11/24 16:31	5
Fluoride	1.21		1.00		mg/L			09/11/24 16:31	5
- Method: SW846 6020B - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 13:51	1
Calcium	84.9		0.500		mg/L		09/06/24 09:00	09/09/24 13:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	340		50.0		mg/L			09/06/24 15:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.3	HF	1.0		SU			09/05/24 10:30	1

Matrix: Ground Water

Lab Sample ID: 310-289701-3

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW4

Da Da

Date Collected: 09/03/24 11:00	Collected: 09/03/24 11:00								
Date Received: 09/05/24 07:45									
_ Method: SW846 9056A - Anions, Io	n Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			09/11/24 16:42	5
Sulfate	102		5.00		mg/L			09/11/24 16:42	5
Fluoride	1.06		1.00		mg/L			09/11/24 16:42	5
Method: SW846 6020B - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 13:53	1
Calcium	117		0.500		mg/L		09/06/24 09:00	09/09/24 13:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	500		50.0		mg/L			09/06/24 15:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.2	HF	1.0		SU			09/05/24 10:32	1

Lab Sample ID: 310-289701-4

1

6

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Result Qualifier

Result Qualifier

Result Qualifier

7.1 HF

0.109

244

1270

Client Sample ID: AP4-MW5

Method: SW846 6020B - Metals (ICP/MS)

Analyte

Boron

Calcium

Analyte

Analyte

General Chemistry

pH (SM 4500 H+ B)

Total Dissolved Solids (SM 2540C)

Client Sample ID: AP4	4-MW5		Lab Sample ID: 310-289701-5						
Date Collected: 09/03/24 1	4:08							Matrix: Groun	d Water
Date Received: 09/05/24 0	7:45								
 Method: SW846 9056A -	Anions, Ion Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.31		5.00		mg/L			09/11/24 16:54	5
Sulfate	719		20.0		mg/L			09/12/24 09:09	20
Fluoride	<1.00		1.00		mg/L			09/11/24 16:54	5
_									

MDL Unit

MDL Unit

RL Unit

mg/L

mg/L

mg/L

SU

D

D

D

Prepared

09/06/24 09:00

09/06/24 09:00

Prepared

Prepared

RL

0.100

0.500

RL

250

RL

1.0

Dil Fac	
5	
20	
5	
Dil Fac	
1	
1	
Dil Fac	
1	
Dil Fac	
1	

13

Job ID: 310-289701-1

Analyzed

09/09/24 13:56

09/09/24 13:56

Analyzed

09/06/24 15:57

Analyzed

09/05/24 10:36

6

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW6

Client Sample ID: AP	4-MW6		Lab Sample ID: 310-289701-6						
Date Collected: 09/03/24 1	3:01						_	Matrix: Groun	d Water
Date Received: 09/05/24 0	7:45								
- Method: SW846 9056A -	Anions, Ion Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			09/11/24 17:05	5
Sulfate	53.0		5.00		mg/L			09/11/24 17:05	5
Fluoride	1.54		1.00		mg/L			09/11/24 17:05	5
Method: SW846 6020B -	Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 13:58	1
Calcium	102		0.500		mg/L		09/06/24 09:00	09/09/24 13:58	1
-									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	428		50.0		mg/L			09/06/24 15:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.3	HF	1.0		SU			09/05/24 10:33	1

Job ID: 310-289701-1

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW7

Analyte

pH (SM 4500 H+ B)

Date Collected: 09/03/24 11:38								Matrix: Groun	d Water
Date Received: 09/05/24 07:45									
- Method: SW846 9056A - Anions, Ic	on Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14.7		5.00		mg/L			09/11/24 17:17	5
Sulfate	29.6		5.00		mg/L			09/11/24 17:17	5
Fluoride	<1.00		1.00		mg/L			09/11/24 17:17	5
- Method: SW846 6020B - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 14:00	1
Calcium	68.5		0.500		mg/L		09/06/24 09:00	09/09/24 14:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	438		50.0		mg/L			09/06/24 15:57	1

RL

1.0

RL Unit

SU

D

Prepared

Result Qualifier

7.4 HF

Job ID: 310-289701-1

Lab Sample ID: 310-289701-7

Analyzed

09/05/24 10:34

Dil Fac

1

6

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Client Sample ID: AP4-MW Blind Duplicate

Date Collected: 09/03/24 00:00

Date Received: 09/05/24 07:45

Job ID: 310-289701-1

Lab Sample ID: 310-289701-8 Matrix: Ground Water

> 5 6

_ Method: SW846 9056A - Anions, Io	n Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.3		5.00		mg/L			09/11/24 17:29	5
Sulfate	30.0		5.00		mg/L			09/11/24 17:29	5
Fluoride	<1.00		1.00		mg/L			09/11/24 17:29	5
- Method: SW846 6020B - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		09/06/24 09:00	09/09/24 14:03	1
Calcium	69.7		0.500		mg/L		09/06/24 09:00	09/09/24 14:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	438		50.0		mg/L			09/06/24 15:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.4	HF	1.0		SU			09/05/24 10:31	1

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	- 4
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ō
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

MB MB

<1.00

<1.00

<0.200

Result Qualifier

Method: 9056A - Anions, Ion Chromatography

Prep Type: Total/NA

Dil Fac

1

09/11/24 14:12 1 09/11/24 14:12 1

Analyzed

09/11/24 14:12

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: AP4-MW1

Client Sample ID: AP4-MW1

Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Water Analysis Batch: 432992

Lab Sample ID: LCS 310-432992/4

Lab Sample ID: MB 310-432992/3

Matrix: Water

Analyte

Chloride

Sulfate

Fluoride

Analysis Batch: 432992

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	
Chloride	10.0	9.801	mg/	L	98	90 - 110	
Sulfate	10.0	9.975	mg/	L	100	90 - 110	
Fluoride	2.00	1.925	mg/	L	96	90 - 110	

RL

1.00

1.00

0.200

MDL Unit

mg/L

mg/L

mg/L

D

Prepared

Lab Sample ID: 310-289701-1 MS Matrix: Ground Water

Analysis Batch: 432992										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	7.54		25.0	31.20		mg/L		95	80 - 120	
Sulfate	22.3		25.0	47.31		mg/L		100	80 - 120	
Fluoride	<1.00		5.00	5.787		mg/L		97	80 - 120	

Lab Sample ID: 310-289701-1 MSD

Matrix: Ground Water

· · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7.54		25.0	31.81		mg/L		97	80 - 120	2	15
Sulfate	22.3		25.0	48.18		mg/L		103	80 - 120	2	15
Fluoride	<1.00		5.00	5.899		mg/L		100	80 - 120	2	15

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-432376/1-A Matrix: Water Analysis Batch: 432666											Client Sa	mple ID: Meth Prep Type: Prep Batch	od Blank Total/NA n: 432376
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Boron	<0.100			0.100			mg/L			09/0	6/24 09:00	09/09/24 13:22	1
Calcium	<0.500			0.500			mg/L			09/0	6/24 09:00	09/09/24 13:22	1
 Lab Sample ID: LCS 310-432376/2-A									C	lient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 432666												Prep Batch	: 432376
			Spike		LCS	LCS						%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Boron			0.200		0.2221			mg/L		_	111	80 - 120	
Calcium			2.00		1.875			mg/L			94	80 - 120	

Job ID: 310-289701-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-289701-1 I Matrix: Ground Water Analysis Batch: 432666	U						Client Sample ID Prep Typ Prep Bat	: AP4 e: Tot	-MW1 tal/NA
Analysis Baten. 402000	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Boron	<0.100		<0.100		mg/L			NC	20
Calcium	92.8		94.00		mg/L			1	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-432387/1 Matrix: Water											Client S	ample ID: Metho Prep Type:	od Blank Total/NA
Analysis Batch: 432387	МВ	мв											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Total Dissolved Solids	<50.0			50.0			mg/L					09/05/24 19:56	1
- Lab Sample ID: LCS 310-432387/2									CI	ient	Sample	ID: Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 432387													
			Spike		LCS	LCS						%Rec	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Total Dissolved Solids			1000		986.0			mg/L			99	88 - 110	
											Client S	ample ID: Metho	od Blank
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 432506													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Total Dissolved Solids	<50.0			50.0			mg/L					09/06/24 15:57	1
									CI	ient	Sample	ID: Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 432506													
			Spike		LCS	LCS						%Rec	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Total Dissolved Solids			1000		978.0			mg/L		_	98	88 - 110	
Method: SM 4500 H+ B - pH													
_ Lab Sample ID: LCS 310-432308/1									CI	ient	t Sample	ID: Lab Contro	Sample

Lab Sample ID: LCS 310-432308/1							Client	t Sample	ID: Lab Con	trol Sa	ample
Matrix: Water									Prep Ty	pe: Tof	tal/NA
Analysis Batch: 432308											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
pH			7.00	7.0		SU		100	98 - 102		
Lab Sample ID: 310-289701-1 DU								Clie	ent Sample IE): AP4	- MW 1
Matrix: Ground Water									Prep Ty	pe: Tot	tal/NA
Analysis Batch: 432308											
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
pH	7.2	HF		7.2		SU				0.1	20

Eurofins Cedar Falls

QC Association Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Job ID: 310-289701-1

9

HPLC/IC

Analysis Batch: 432992

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-289701-1	AP4-MW1	Total/NA	Ground Water	9056A	
310-289701-2	AP4-MW2	Total/NA	Ground Water	9056A	
310-289701-2	AP4-MW2	Total/NA	Ground Water	9056A	
310-289701-3	AP4-MW3	Total/NA	Ground Water	9056A	
310-289701-4	AP4-MW4	Total/NA	Ground Water	9056A	
310-289701-5	AP4-MW5	Total/NA	Ground Water	9056A	
310-289701-5	AP4-MW5	Total/NA	Ground Water	9056A	
310-289701-6	AP4-MW6	Total/NA	Ground Water	9056A	
310-289701-7	AP4-MW7	Total/NA	Ground Water	9056A	
310-289701-8	AP4-MW Blind Duplicate	Total/NA	Ground Water	9056A	
MB 310-432992/3	Method Blank	Total/NA	Water	9056A	
LCS 310-432992/4	Lab Control Sample	Total/NA	Water	9056A	
310-289701-1 MS	AP4-MW1	Total/NA	Ground Water	9056A	
310-289701-1 MSD	AP4-MW1	Total/NA	Ground Water	9056A	

Metals

Prep Batch: 432376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-289701-1	AP4-MW1	Total/NA	Ground Water	3005A	
310-289701-2	AP4-MW2	Total/NA	Ground Water	3005A	
310-289701-3	AP4-MW3	Total/NA	Ground Water	3005A	
310-289701-4	AP4-MW4	Total/NA	Ground Water	3005A	
310-289701-5	AP4-MW5	Total/NA	Ground Water	3005A	
310-289701-6	AP4-MW6	Total/NA	Ground Water	3005A	
310-289701-7	AP4-MW7	Total/NA	Ground Water	3005A	
310-289701-8	AP4-MW Blind Duplicate	Total/NA	Ground Water	3005A	
MB 310-432376/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-432376/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-289701-1 DU	AP4-MW1	Total/NA	Ground Water	3005A	

Analysis Batch: 432666

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-289701-1	AP4-MW1	Total/NA	Ground Water	6020B	432376
310-289701-2	AP4-MW2	Total/NA	Ground Water	6020B	432376
310-289701-3	AP4-MW3	Total/NA	Ground Water	6020B	432376
310-289701-4	AP4-MW4	Total/NA	Ground Water	6020B	432376
310-289701-5	AP4-MW5	Total/NA	Ground Water	6020B	432376
310-289701-6	AP4-MW6	Total/NA	Ground Water	6020B	432376
310-289701-7	AP4-MW7	Total/NA	Ground Water	6020B	432376
310-289701-8	AP4-MW Blind Duplicate	Total/NA	Ground Water	6020B	432376
MB 310-432376/1-A	Method Blank	Total/NA	Water	6020B	432376
LCS 310-432376/2-A	Lab Control Sample	Total/NA	Water	6020B	432376
310-289701-1 DU	AP4-MW1	Total/NA	Ground Water	6020B	432376

General Chemistry

Analysis Batch: 432308

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-289701-1	AP4-MW1	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-2	AP4-MW2	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-3	AP4-MW3	Total/NA	Ground Water	SM 4500 H+ B	

QC Association Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

General Chemistry (Continued)

Analysis Batch: 432308 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-289701-4	AP4-MW4	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-5	AP4-MW5	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-6	AP4-MW6	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-7	AP4-MW7	Total/NA	Ground Water	SM 4500 H+ B	
310-289701-8	AP4-MW Blind Duplicate	Total/NA	Ground Water	SM 4500 H+ B	
LCS 310-432308/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
310-289701-1 DU	AP4-MW1	Total/NA	Ground Water	SM 4500 H+ B	

Analysis Batch: 432387

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-289701-1	AP4-MW1	Total/NA	Ground Water	SM 2540C	
MB 310-432387/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-432387/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 432506

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-289701-2	AP4-MW2	Total/NA	Ground Water	SM 2540C	
310-289701-3	AP4-MW3	Total/NA	Ground Water	SM 2540C	
310-289701-4	AP4-MW4	Total/NA	Ground Water	SM 2540C	
310-289701-5	AP4-MW5	Total/NA	Ground Water	SM 2540C	
310-289701-6	AP4-MW6	Total/NA	Ground Water	SM 2540C	
310-289701-7	AP4-MW7	Total/NA	Ground Water	SM 2540C	
310-289701-8	AP4-MW Blind Duplicate	Total/NA	Ground Water	SM 2540C	
MB 310-432506/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-432506/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Lab Sample ID: 310-289701-1 Matrix: Ground Water

Lab Sample ID: 310-289701-2

Lab Sample ID: 310-289701-3

Lab Sample ID: 310-289701-4

Matrix: Ground Water

Matrix: Ground Water

Matrix: Ground Water

Client Sample ID: AP4-MW1 Date Collected: 09/03/24 08:55 Date Received: 09/05/24 07:45 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed 9056A 09/11/24 15:44 Total/NA Analysis 5 432992 HE7K EET CF Total/NA Prep 3005A 432376 QTZ5 EET CF 09/06/24 09:00 Total/NA Analysis 6020B 432666 NFT2 EET CF 09/09/24 13:26 1 Total/NA SM 2540C 432387 MDU9 09/05/24 19:56 Analysis 1 EET CF SM 4500 H+ B 432308 W9YR EET CF 09/05/24 10:28 Total/NA Analysis 1

Client Sample ID: AP4-MW2

Date Collected: 09/03/24 09:32 Date Received: 09/05/24 07:45

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 16:19
Total/NA	Analysis	9056A		20	432992	HE7K	EET CF	09/12/24 08:58
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 13:49
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:35

Client Sample ID: AP4-MW3

Date Collected: 09/03/24 10:10 Date Received: 09/05/24 07:45

	. 03/00/24 07.4	•						
_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 16:31
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 13:51
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:30

Client Sample ID: AP4-MW4

Date Collected: 09/03/24 11:00

Date Received: 09/05/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 16:42
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 13:53
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:32

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Matrix: Ground Water

Client Sample ID: AP4-MW5 Date Collected: 09/03/24 14:08 Date Received: 09/05/24 07:45

Γ	Batch	Bate	ch		Dilution	Batch			Prepared
Prep Type	Туре	Met	hod	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analy	sis 905	6A		5	432992	HE7K	EET CF	09/11/24 16:54
Total/NA	Analy	sis 905	6A		20	432992	HE7K	EET CF	09/12/24 09:09
Total/NA	Prep	300	5A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analy	sis 602	0B		1	432666	NFT2	EET CF	09/09/24 13:56
Total/NA	Analy	sis SM	2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analy	sis SM	4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:36

Client Sample ID: AP4-MW6

Lab Sample ID: 310-289701-6 Matrix: Ground Water

Lab Sample ID: 310-289701-7

Lab Sample ID: 310-289701-8

Matrix: Ground Water

Matrix: Ground Water

Lab Sample ID: 310-289701-5

ound Water

Date Collected: 09/03/24 13:01
Date Received: 09/05/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 17:05
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 13:58
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:33

Client Sample ID: AP4-MW7 Date Collected: 09/03/24 11:38

Date Received: 09/05/24 07:45

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 17:17
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 14:00
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:34

Client Sample ID: AP4-MW Blind Duplicate

Date Collected: 09/03/24 00:00

Date Received: 09/05/24 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	432992	HE7K	EET CF	09/11/24 17:29
Total/NA	Prep	3005A			432376	QTZ5	EET CF	09/06/24 09:00
Total/NA	Analysis	6020B		1	432666	NFT2	EET CF	09/09/24 14:03
Total/NA	Analysis	SM 2540C		1	432506	MDU9	EET CF	09/06/24 15:57
Total/NA	Analysis	SM 4500 H+ B		1	432308	W9YR	EET CF	09/05/24 10:31

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Accreditation/Certification Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit Job ID: 310-289701-1

,				
Laboratory: Eurofins (Cedar Falls			3
Authority	Program	Identification Number	Expiration Date	4
Oregon	NELAP	IA100001	09-29-24	5
				6
				8
				9
				11
				13

Method Summary

Client: Nebraska Public Power District Project/Site: Sheldon Station Ash Landfill #4 CCR New Permit

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CF
6020B	Metals (ICP/MS)	SW846	EET CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CF
SM 4500 H+ B	рН	SM	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

310-289701 Chain of Custody

Cooler/Sample Receipt and Temperature Log Form

Client Information	······································							
Client. Nehvaska								
City/State:	STATENE	Project:						
Receipt Information								
Date/Time PATE Received: 9524	TIME 74"	S Received By:						
Delivery Type: 🖄 UPSaMy 🗆	FedEx	FedEx Ground US Mail Spee-Dee						
🗌 Lab Courier 🗌	Lab Field Service	es 🗌 Client Drop-off 🛛 Other:						
Condition of Cooler/Containers								
Sample(s) received in Cooler?	Yes No	<i>If yes:</i> Cooler ID.						
Multiple Coolers?	Yes 🗖 No	<i>If yes:</i> Cooler # of						
Cooler Custody Seals Present?	KYes ∐No	If yes: Cooler custody seals intact? Yes						
Sample Custody Seals Present? No	Yes ANO	If yes: Sample custody seals intact? Yes						
Trip Blank Present?	Yes ANO	If yes: Which VOA samples are in cooler? 1						
Temperature Record								
Coolant: 🖉 Wet ice 🗌 Blu	e ice 🗌 Dry	ice Other: NONE						
Thermometer ID:	F.	Correction Factor (°C): $+0$ 0						
Temp Blank Temperature – If no tem	p blank, or temp blank	temperature above criteria, proceed to Sample Container Temperature						
Uncorrected Temp (°C):	1-8	Corrected Temp (°C):						
Sample Container Temperature								
Container(s) used:	<u>=R1</u>	CONTAINER 2						
Uncorrected Temp (°C):								
Corrected Temp (°C):								
Exceptions Noted								
 If temperature exceeds criteria, a) If yes: Is there evidence th 	was sample(s) re at the chilling proc	ceived same day of sampling?						
2) If temperature is <0°C, are then (e.g , bulging septa, broken/cra	e obvious signs th cked bottles, froz	hat the integrity of sample containers is compromised? en solid?)						
Note If yes, contact PM before proceeding If no, proceed with login								
	9895							
	a an							
	•							
L								

Page 25 of 27

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Eurofins Cedar Falls

3019 Venture Way Cedar Falls, IA 50613 Phone (319) 277-2401 Fax (319) 277-2425

Client Information	Sample Todd A. (Ainn Lab PM.										Car	Carrier Tracking No(s).			Ċ	COC No:	
Client Contact Todd A. Chinn	Phone: 4:07	- 787	.570	SIO E-Ma	ail:										F	Page:	
Company	100				1									<u> </u>	┽	Job #.	
Nebraska Public Power District	Due Date Request	ed:					1		Ar	alysis	Reque	sted			-+	Preservation Code	x
4500 West Pella Road	Nor	nal T	AT			-									ſ	A - HCI	s. M - Hexane
City Hallam	TAT Requested (d	ays):	_] 📗											B - NaOH	N - None
State, Zip:		Norm	rel													D - Nitric Acid	P - Na2O4S
NE, 68368																E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2SO3
102-787-5256	PO#: Purchase Order	not required	ť							1						G - Amchlor	S - H2SO4 T - TSP Dodecabydrate
Email:	WO #:				ĬŽ,		e	- me								I - Ice	U - Acetone
rachinn@nppd_com Project Name:	TestAmerica Project	t#			- Se C		Sulfa	L Buj		Ì					lers	K - EDTA	W - ph 4-5
Sheldon Station Ash Landfill #4 CCR New Permit	31005953					d Calcium	de, S	hort Holdi								L-EDA	Z - other (specify)
Site: Nebraska					amp		Fluor								3	Other-	
				Madain	ed S	n ane	lde, I	pH S							ž -		
			Sample	Wiatrix (W=water	ilter M	Boro	Chlor	ŧ	TDS						Ē		
		Sample	(C=comp,	S=solid, O=waste/oll,	Id F	A O	88A (1450	40C					8	tal N		
Sample Identification	Sample Date	Time	G=grab)	BT¤Tissue, A=Air)		<u> </u>	š	ŝ	25					$\downarrow \downarrow$	₿	Special Inst	tructions/Note:
		\geq	Preserva	tion Code.	¥Υ	YD_	N	N	N			<u> </u>		+P	작		Re-
AP4-MW1	9.3.24	0855	G	GW		X	X	X	Х								
AP4-MW2	9.3-24	0932	G	GW		×	X	x	х								
AP4-MW3	9.3.24	1010	G	GW		x	x	x	х								
AP4-MW4	9.3-24	1100	G	GW		X	X	x	х								
AP4-MW5	9-3-24	1408	G	GW	Π	X	x	x	х								-
AP4-MW6	9.3-24	1301	G	GW		X	x	x	х								
AP4-MW7	9-3-24	1138	G	GW		X	X	X	х								
AP4-MW Blind Duplicate	9.3.24	N/A	G	GW		X	x	x	х								
														- 11000			
Possible Hazard Identification					Sa	ampl	e Dısı	posa	1(A	fee may	be asse	ssed if s	amples a	re reta	inec	d longer than 1 n	nonth)
Non-Hazard Flammable Skin Irritant Poise	on B Unkno	own R	adiological			L P	Return	TO C	Clien	. L	Disp	osal By L	ab		chiv	/e For	_ Months
Deliverable Requested. I, II, III, IV, Other (specify)					IS,	oecia	i Instr	uction	ns/Q(C Require	ements:						
Empty Kit Relinquished by		Date.			Time							Method o	f Shipment:				
Relinquished by Lody C. Chinn	l. him Date/Time: 4.74 11.00 Company		Сотралу		Received by						Date/Time	£			Company		
Relinquished by	Date/Time: Company		Company		Received by					Date/Time:					Company		
Relinquished by	Date/Time: Company			Company		Received by:				/		Date/Time	ate	বা	24 571	Company	
Custody Seals Intact: Custody Seal No Δ Yes Δ No						Coc	Cooler Temperature(s) °C and Other Remarks.										

9/13/2024

Client: Nebraska Public Power District

Login Number: 289701 List Number: 1

Creator: Homolar, Dana J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

1 2 3 4 5 6 7 8 9 10 11 12 13

14

Job Number: 310-289701-1

List Source: Eurofins Cedar Falls

SDG Number:

APPENDIX B

Field Notes
					0						
Locatior	_ocation (Site/Facility Name) NPPD S8 Hsh Land FII #4									10.0	<u> / 3.9</u> of screen
Well Nu	ımber	+P4-h	NW	Date_	Q-3	-2024	-			Тор	Bottom
Field Pe	ersonnel	Todd A	.China	Pa	tricia	A. Nava	K	P	ump Inta	ake at (ft	. below MP)
Samplir	ng Organi	zation	NPP	P				I	Purging	Device; ((pump type) Micio Purge
Identify	MP	00	of C	asing				Т	otal Volu	ıme Purç	$ged _ 2530 mL$
				. 0							
Well Co	nditions/	Field Obs	servatior	ns: 51	ô, S	unnis	, 5	neph	fro	m t	he South
Clock	Water		Burgo	Cum.		Specifi	/	лH			
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	pН	Lab	%DO	ORP	Comments
24hr	below MP ft	Setting	mL/min	Purged in milliliters		µmhos	MP-20	Accumet		mv	
nan1		CPMH									
0837	20.7	10/5	94								Start Fump
0835		0PM4 10/5	94								Cell is full
0840		CPM4 10/5	qy		4.68	7173	6.97		35.1	91.5	
6845		CPM4 ID/S	94		14 60	718.8	697		209	824	21 C
0850		CPM4	au		1452	7182	1099		301	KC	
000		C. MM4			1-1-55	10.2	0.11		8.	10,0	
USS		10/5	94		14.55	716,4	<i>b.</i>		27.5	70,5	Damplet 500nL
100				1780	×						Sample #2 2SDml
0900	21.8										Donie
							6				

Location (Site/Facility Name) NPPD SS Abh Landfill #4									Depth to	10.9	/ <u>31.4</u> of screen	
Nell Number HP4 - MW2 Date 9-3-2024										Тор	Bottom	
Field Pe	rsonnel	Dod	A.Chin	in rat	rrigia L	Novak	-	Pump Intake at (ft. below MP) <u>& 1</u>				
Samplin	Sampling Organization NPPD									Device; (pump type) Micro Fucge	
Identity		op of	Casi	ug				1	otal volu	ime Purç	ged 3 160 ML	
Well Co	nditions/	Field Obs	servatior	ıs: /	00	0		-7	0			
				6		Sunne		Imp	h th	on	the South	
Clock	Water	D	Purae	Cum.	22	Specific		pН		000		
Time	Depth below MP	Pump Diai Setting	Rate	Volume Purged in	Temp C°	Conductivity	рн MP-20	Lab	%DO	0RP mv	Comments	
24hr	ft	ootang	mL/min	milliliters		µmhos	1011 20	Accumet				
0909	27.17	CPM4 10/5	125					· · · · · · · · · · · · · · · · · · ·			Start Pump	
0911		CPM4 10/5	125								Cel is full	
0912		CPM4	125		10.2	1962	7.07		85.1	62.2		
0916		CPM4	125		14.52	2072	6.97		735	68.8		
(917		CPM4	125		1432	2080	699		797	7126		
29210		CPM4	125	2000	12/22	1007	690	SD2	797	.797		
0120		CPM4	120	Luu	112	2082	10	0014	701	11.1 02 ch	0 1 41	
0732	-	1015	122		14:34	-2085	6.11		18.7	82.T	Damphe 1 500ml	
	28.8			1000							Sample # 2 250mL	
0939											Done	
								1			1	

Locatior	n (Site/Fa	cility Nan	ne)_N	PD 88	s Hon	Land !!!	14		Depth to	10.5	5 / 35,5 of screen
Well Nu	Vell Number AP4-MW3 Date 9-3-2024									Тор	Bottom
Field Pe	ersonnel	Tool	A. Chm	n Pa	tricia	A. Nou	rak	Р	ump Inta	ake at (ft.	below MP) 33.5
Samplin	g Organi	PPD .	V				F	Purging [Device; (pump type) Micro Punge	
Identify	MP	100	of (asing				T	otal Volu	ime Purg	ed 3460mL
-				0							
Well Co	nditions/	Field Obs	servatior	^{ns:} 15	°. Su	nny	9	noh	fra	n d	the South
Cleak	Water		Durge	Cum.	/ •	Specific		рН			
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	pH	Lab	%DO	ORP	Comments
24hr	below MP	Setting	mL/min	Purged in milliliters	·	µmhos	MP-20	Accumet		mv	
mia		(Du, 1)	100	Trinintera							01 1 1 1
(948	25.75	10/5	128								Start Fung
69150		CPM4 10/5	28		1709	6574	7.19		87.8	620	Cell isfull
7955		CPMg	178		15.94	634 7	7.09		17.3	18.2	
IDOO		CPM4	178		110.78	10247	7.07		5.1	15	
ILLOS		CPM4	120	2	11 27	1.22 1	700		111	27	
1005		10/5	160	XII	10.21	005.4	108		4.4	A.L	
1010		10/5	128	_	16,54	632.6	7.02		5.3	4.6	Sample # 500mL
				OI7					1000	_	Sample #2 28Dal
25	269										Dance
	U.U.T		1		1						00000
					-						
N											
				ļ							

Location (Site/Facility Name) Depth to IID 31.0 of screen NPPD-20 Well Number <u>AP4</u> - MW4 Field Personnel <u>Fodd A. Chhn</u> Date 9-3-2029 Тор Bottom + Patricia A. Nova Pump Intake at (ft. below MP) 25,0 Sampling Organization NPPD Purging Device; (pump type) Micro Pure Casul Identify MP Total Volume Purged Well Conditions/ Field Observations: the South toon neph inner Water Cum. Specific pН Clock Purge Pump Dial ORP Depth Volume pН Temp C° Conductivity Lab %DO Comments Time Rate Purged in MP-20 below MP Setting mv 24hr mL/min umhos Accumet ft milliliters D/S 24.65 33 MA 33 6.93 70.4 IK B 87 15 50. PMU 133 16.9 695 DSO ML 33 86Z 2000 39. 1.07 0 33 8033 38.7 75 70 133 188 7.00 37. 33 PML 2000 DSO MA 133 055 09 345 CPM4 33 109C 00 0 ્ય 20,5 H 105

. 61

8.4

.

Location	n (Site/Fa	cility Nan	ne) NPP	DSS	Hsh L	inf fil 1	4		Depth to	Di	2 / 10.2 of screen			
Well Nu	Vell Number HP4 - MWS Date 9-3-7014									Top Bottom				
Field Pe	ersonnel	Todd F	Chy	in Pa	tweete	ANOV	al	Pump Intake at (ft. below MP) 34.7						
Samplin	o Organi	zation	DDD	ht				F	Puraina l	Device: (nump type) Marcon Ruper			
Identify	MP TL		110					т	otal Volu	ime Pura				
lacinity		P	a	stury			-							
	nditions/	Field Ob	envation		000				1					
				13.	9.3	unny	12	mit	sh l	DING	I home the South			
Clock	Water		Durgo	Cum.	· · · ·	Specific		ъН						
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	pН	Lab	%DO	ORP	Comments			
24hr	below MP	Setting	mL/min	Purged in		µmhos	MP-20	Accumet		mv				
101.0	n	L.A.di		miniters										
35	23.85	UM4	129								Start Lunio			
317		LPMint 105	129								Cell IS full			
E18		CPM4	129		18.89	2836	6.75		79.S	69.5				
1373		Сриц	129	0	11.75	7854	6.12		ESS1	72.9				
1328		CPM4	129		6.52	2850	60		5.2	745				
12.33		CPMy	129		1615	2850	66		54	7/04				
1200		10ml	141	auc	10.13	2000	0.00		2.0	10.1				
598		10/5	129		6.00	2844	6.65	-	6.6	18.2	ki j			
1348		Com4	120	2000	16.63	2635	6.19		6.8	78.9	Alter .			
1348		CPM4 10/5	129		1646	2077	10.79		87	771				
1353		CP My	179		1.4	1745	6.80		9.4	74.8	4			
1958		CPM4	129	2000	11.47	1057	1088		90	73.1				
UM		CPMH	120	2000	1 <1	LOUD	1.90	2	19	71,				
1100		10/5	129		14'SI		0.0	1	"	1.				
1408		15/5	129		1648	1646	6.88		6.9	70.0	Dample # 500ml			
				1000							Semere #2 280ml			
1415	26.4										Deno			
4	<u>a</u>													

 $V_{i} = \infty$

			201								
Locatior	ocation (Site/Facility Name) NPPD SS Ash Land Cill #4									(D)	of screen
Well Nu	Nell Number APH - MWG Date 9-2.7DJ4									Тор	Bottom
Field Pe	ersonnel	Dala	A Ch	nn I	chico	AN	MAK	Р	ump Inta	ake at (ft	below MP) 34
Samplin	Sampling Organization									Device (
Identify		0 -l	A.c.	in m				Т	otal Voli	ime Purc	red 7000-1-
lucinity		Por	(asi	ing				1		ine i uiç	
Well Co	nditions/	Field Ob	servation	15'		0		(<u></u>	
						Junn	2	Int	hf	non	The South
Clock	Water		Durae	Cum.	'	Specific		nH		-	14 C
Time	Depth	Pump Dial	Rate	Volume	Temp C°	Conductivity	∕рН	Lab	%DO	ORP	Comments
24hr	below MP	Setting	mL/min	Purged in		µmhos	MP-20	Accumet		mv	
IL-A		20411	1-1	miniters							O
1151	17.3	10/S	[0]								Start Punp
201		CPM4 10/5	101		20.38	830.8	6.92		68.1	67.6	Cellis Sulf
1206		cpmg	101		18.70	988.3	686	1	137	345	
1211		CPMY	IDI		18.92	9497	6.86	1	6.8	311	
1210		CPM4	101		19.39	9042	6.87		6.7	233	
1221		CPMY	IDI		1982	8172	10.88		124	360	
1221		CUMY		2000	1021	81112	690		10.8	381	
1666		IU/S	101	Luc .		071.2	80.			0.1	
23		10/5	101		20.52	820.1	6.88		1.5	39.4	
1220		10/5	101		20.77	802.2	690)	7.9	40.0	
124		GPM4 BX5	DI		21.15	788.5	69D		8.6	4D.)	
1246		CPM4	IDI		1647	758.4	6.97		10.7	407	
1251		CPM4	IDI	2000	15.97	730.3	698		19.0	42.6	
1256	3	CPM4	101		11.33	7221.	698		22.8	1152	
1301		CPM4	101	1000	1074	7706	1.97		RN	182	Samola Sal 1
		- IDIS		150	10.01	120.0	Will		AUIV	7010	Supply South
200	100			d or							panore Loo mil
120	19.9										Denb

Location (Site/Facility Name) NPPD SS Ash Land Hills Well Number 474 - MW 7 Date 9-3-2024 Repricing A. Chung Patricing A. 355 of screen Depth to 0 Тор Bottom Pump Intake at (ft. below MP) 33,< Purging Device; (pump type) Mtcro Purge Total Volume Purged _______ Sampling Organization_NPPD Identify MP Jon of Casim Well Conditions/ Field Observations: from the South unna Cum. Water Specific pН Clock Purge Pump Dial Volume ORP Depth pН Temp C° %DO Conductivity Lab Comments Time Rate Setting Purged in MP-20 below MP mv 24hr mL/min umhos Accumet milliliters PMU 10/5 03 26.02 22.62254 CPMU 8 10.9 B 62.7 51 M 28 68.8 7.14 S 2000 86.2 03 710 39 .20 85.9 500 ml 33 03 ـ₩ Dw 2743 210

APPENDIX C

Time Series Data

https://wsponline.sharepoint.com/Sites/Global-NPPD2023GWQualityRep/Project Files/5 Technical Work/Sheldon/2024 - Q3/Time Series/[App C - Q3 2024 Time Series.xlsm]C-1

https://wsponline.sharepoint.com/Sites/Global-NPPD2023GWQualityRep/Project Files/5 Technical Work/Sheldon/2024 - Q3/Time Series/[App C - Q3 2024 Time Series.xlsm]C-2

https://wsponline.sharepoint.com/Sites/Global-NPPD2023GWQualityRep/Project Files/5 Technical Work/Sheldon/2024 - Q3/Time Series/[App C - Q3 2024 Time Series.xlsm]C-3

APPENDIX D

Comparative Statistical Analysis

Sanitas $^{\rm TM}$ v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 88.24% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 1:28 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=93.24, Std. Dev.=5.454, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9613, critical = 0.892. Report alpha = 0.002326. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 1:17 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 16 background values. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Chloride Analysis Run 10/11/2024 1:18 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas[™] v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary: Mean=0.7335, Std. Dev.=0.3031, n=17, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9399, critical = 0.892. Report alpha = 0.002326. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 10/11/2024 1:20 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.246, Std. Dev.=0.1887, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9501, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH,	field measured	Analysis Run 10/11/2024 1:24 PM				
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)				

Background Data Summary: Mean=23.57, Std. Dev.=2.016, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9891, critical = 0.892. Report alpha = 0.00197. Dates ending 3/2/2022 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 10/11/2024 1:22 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=433.5, Std. Dev.=37.68, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9301, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 1:25 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas $^{\rm TM}$ v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 93.75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 1:27 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=297.4, Std. Dev.=26.17, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9371, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 1:29 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Chloride Analysis Run 10/11/2024 1:29 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas[™] v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 37.5% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 10/11/2024 1:30 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.203, Std. Dev.=0.1625, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9453, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH,	field measured	Analysis Run 10/11/2024 1:31 PM
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=856.1, Std. Dev.=42.66, n=17. Exceedance nullified by following point per option settings. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9342, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 10/11/2024 1:32 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Total Dissolved Solids Analysis Run 10/11/2024 1:33 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Sanitas $^{\rm TM}$ v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 1:35 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=86.46, Std. Dev.=4.678, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9528, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 1:35 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas $^{\rm TM}$ v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 76.47% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 10/11/2024 1:36 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1) Sanitas[™] v.10.0.22 Sanitas software licensed to Golder Associates. UG Hollow symbols indicate censored values.

Background Data Summary: Mean=1.092, Std. Dev.=0.3464, n=17, 5.882% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9173, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 10/11/2024 1:37 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.399, Std. Dev.=0.1466, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9619, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH,	field measured	Analysis Run 10/11/2024 1:39 PM				
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)				

Background Data Summary: Mean=28.25, Std. Dev.=4.977, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9311, critical = 0.892. Report alpha = 0.002306. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 10/11/2024 1:39 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=434.5, Std. Dev.=29.51, n=8. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9615, critical = 0.818. Report alpha = 0.01624. Dates ending 5/16/2017 used for control stats. Standardized h=4.5, SCL=4.5.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 1:41 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 1:43 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=109.1, Std. Dev.=10.96, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9569, critical = 0.892. Report alpha = 0.00227. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 1:44 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 10/11/2024 1:45 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on square transformation): Mean=0.9349, Std. Dev.=0.4633, n=17, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9598, critical = 0.892. Report alpha = 0.002372. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 10/11/2024 1:47 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.264, Std. Dev.=0.1325, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9275, critical = 0.887. Report alpha = 0.002492. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured		Analysis Run 10/11/2024 1:49 PN	I
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (7	I)

Background Data Summary: Mean=93.53, Std. Dev.=21.56, n=16. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9551, critical = 0.887. Report alpha = 0.002546. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 10/11/2024 1:53 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=522.6, Std. Dev.=55.75, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9137, critical = 0.892. Report alpha = 0.002296. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 1:52 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 88.24% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 1:54 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on square transformation): Mean=202731, Std. Dev.=108424, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9688, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 1:55 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on natural log transformation): Mean=1.852, Std. Dev.=0.2235, n=17, 17.65% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8976, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Chloride Analysis Run 10/11/2024 1:56 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 16 background values. 68.75% NDs. Well-constituent pair annual alpha = 0.01287. Individual comparison alpha = 0.006456 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 10/11/2024 1:57 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=6.978, Std. Dev.=0.1639, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9188, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured		Analysis Run 10/11/2024 1:58 PM
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit.

> Constituent: Sulfate Analysis Run 10/16/2024 3:27 PM Sheldon Station Client: NPPD Data: SheldonStation_Q3-2024

Background Data Summary (based on square transformation): Mean=5324676, Std. Dev.=2749578, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9112, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 2:00 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 2:02 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=101.9, Std. Dev.=6.261, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.921, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Calcium Analysis Run 10/11/2024 2:02 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Chloride Analysis Run 10/11/2024 2:03 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=1.473, Std. Dev.=0.3557, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9584, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Fluoride Analysis Run 10/11/2024 2:03 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.268, Std. Dev.=0.1381, n=17. Exceedance nullified by following point per option settings. Data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9803, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured		Analysis Run 10/11/2024 2:04 PM
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)

Background Data Summary (based on square root transformation): Mean=7.778, Std. Dev.=0.7349, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8957, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

> Constituent: Sulfate Analysis Run 10/11/2024 2:05 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=471.9, Std. Dev.=53.74, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9491, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 2:06 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 94.12% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Boron Analysis Run 10/11/2024 2:06 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of control chart because the Shapiro Wilk normality test showed the data to be nonnormal at the 0.05 alpha level. Limit is highest of 17 background values. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

> Constituent: Calcium Analysis Run 10/11/2024 2:07 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=11.97, Std. Dev.=1.486, n=17. Exceedance nullified by following point per option settings. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.916, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Chloride Analysis Run 10/11/2024 2:07 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Within Limit

Prediction Limit

Non-parametric test used in lieu of control chart because non-detects exceed user-adjustable maximum of 25%. Limit is highest of 17 background values. 70.59% NDs. Well-constituent pair annual alpha = 0.01179. Individual comparison alpha = 0.005914 (1 of 2). Most recent point compared to limit. Seasonality was not detected with 95% confidence.

Constituent: Fluoride Analysis Run 10/11/2024 2:08 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=7.478, Std. Dev.=0.1529, n=17. Seasonality was detected with 95% confidence and data were deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9487, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: pH, field measured		Analysis Run 10/11/2024 2:09 PM
Sheldon Station	Client: NPPD	Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=42.98, Std. Dev.=5.065, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9624, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Sulfate Analysis Run 10/11/2024 2:10 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

Background Data Summary: Mean=525.2, Std. Dev.=51.58, n=17. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9697, critical = 0.892. Report alpha = 0.00236. Dates ending 8/25/2021 used for control stats. Standardized h=4, SCL=4.

Constituent: Total Dissolved Solids Analysis Run 10/11/2024 2:12 PM Sheldon Station Client: NPPD Data: SheldonStation_Q1-2024 (1)

